
wolfBoot Documentation

2024-03-13

1

CONTENTS CONTENTS

Contents

1 Introduction 5

2 Compiling wolfBoot 6
2.1 Generate a new configuration . 6
2.2 Platform selection . 6

2.2.1 Flash partitions . 6
2.3 Bootloader features . 7

2.3.1 Change DSA algorithm . 7
2.3.2 Incremental updates . 8
2.3.3 Enable debug symbols . 8
2.3.4 Disable interrupt vector relocation . 8
2.3.5 Limit stack usage . 8
2.3.6 Disable Backup of current running firmware 8
2.3.7 Enable workaround for ‘write once’ flash memories 8
2.3.8 Allow version roll-back . 9
2.3.9 Enable optional support for external flash memory 9
2.3.10 Executing flash access code from RAM . 10
2.3.11 Enable Dual-bank hardware-assisted swapping 10
2.3.12 Store UPDATE partition flags in a sector in the BOOT partition 10
2.3.13 Invert logic of flags . 10
2.3.14 Using Mac OS/X . 10
2.3.15 Enabling mitigations against glitches and fault injections 11

3 Targets 12
3.1 Supported Targets . 12
3.2 STM32F4 . 12

3.2.1 STM32F4 Programming . 13
3.2.2 STM32F4 Debugging . 13

3.3 STM32L4 . 13
3.4 STM32L5 . 13

3.4.1 Scenario 1: TrustZone Enabled . 13
3.4.2 Scenario 2: Trustzone Disabled . 14
3.4.3 Debugging . 15

3.5 STM32U5 . 15
3.5.1 Scenario 1: TrustZone Enabled . 15
3.5.2 Scenario 2: TrustZone Disabled . 16
3.5.3 Debugging . 16

3.6 STM32L0 . 17
3.6.1 STM32L0 Building . 17

3.7 STM32G0 . 18
3.7.1 Building STM32G0 . 18
3.7.2 Debugging STM32G0 . 18
3.7.3 STM32G0 Debugging . 18

3.8 STM32WB55 . 19
3.8.1 STM32WB55 Building . 19
3.8.2 STM32WB55 with OpenOCD . 19
3.8.3 STM32WB55 with ST-Link . 19
3.8.4 STM32WB55 Debugging . 19

3.9 SiFive HiFive1 RISC-V . 20
3.9.1 Features . 20
3.9.2 Default Linker Settings . 20
3.9.3 Stock bootloader . 20

COPYRIGHT ©2021 wolfSSL Inc. 2

CONTENTS CONTENTS

3.9.4 Application Code . 20
3.9.5 wolfBoot configuration . 20
3.9.6 Build Options . 21
3.9.7 Loading . 21
3.9.8 Debugging . 21

3.10 STM32F7 . 21
3.10.1 Build Options . 21
3.10.2 Loading the firmware . 22
3.10.3 STM32F7 Debugging . 22

3.11 STM32H7 . 23
3.11.1 Build Options . 23
3.11.2 STM32H7 Programming . 23
3.11.3 STM32H7 Testing . 23
3.11.4 STM32H7 Debugging . 23

3.12 NXP LPC54xxx . 24
3.12.1 Build Options . 24
3.12.2 Loading the firmware . 24
3.12.3 Debugging with JLink . 24

3.13 Cortex-A53 / Raspberry PI 3 (experimental) . 24
3.13.1 Compiling the kernel . 24
3.13.2 Testing with qemu-system-aarch64 . 25

3.14 Xilinx Zynq UltraScale . 25
3.14.1 QNX . 25

3.15 Cypress PSoC-6 . 25
3.15.1 Building . 26
3.15.2 Clock settings . 26
3.15.3 Loading the firmware . 26
3.15.4 Debugging . 27

3.16 NXP iMX-RT . 27
3.16.1 Building wolfBoot . 27

3.17 NXP Kinetis . 27
3.17.1 Buld options . 28
3.17.2 Example partioning for K82 . 28

3.18 NXP T2080 PPC . 28
3.18.1 Building wolfBoot . 28

3.19 TI Hercules TMS570LC435 . 28
3.20 Qemu x86-64 UEFI . 28

3.20.1 Prerequisites: . 28
3.20.2 Configuration . 29
3.20.3 Building and running on qemu . 29

3.21 Nordic nRF52840 . 29
3.22 Simulated . 30

4 Hardware abstraction layer 31
4.1 Supported platforms . 31
4.2 API . 31

4.2.1 Optional support for external flash memory . 32

5 Flash partitions 33
5.1 Flash memory partitions . 33

5.1.1 Bootloader partition . 33
5.1.2 BOOT partition . 33
5.1.3 UPDATE partition . 33

5.2 Partition status and sector flags . 33

COPYRIGHT ©2021 wolfSSL Inc. 3

CONTENTS CONTENTS

5.3 Overview of the content of the FLASH partitions . 34

6 wolfBoot Features 35
6.1 Signing . 35

6.1.1 wolfBoot key tools installation . 35
6.1.2 Install Python3 . 35
6.1.3 Install wolfCrypt . 35
6.1.4 Install wolfcrypt-py . 35
6.1.5 Install wolfBoot . 35
6.1.6 C Key Tools . 35
6.1.7 Command Line Usage . 35
6.1.8 Key generation and management . 36
6.1.9 Signing Firmware . 39
6.1.10 Signing Firmware with External Private Key (HSM) 39

6.2 Measured Boot using wolfBoot . 39
6.2.1 Concept . 40
6.2.2 Configuration . 40

6.3 Firmware image . 41
6.3.1 Firmware entry point . 41
6.3.2 Firmware image header . 41

6.4 Firmware update . 42
6.4.1 Updating Microcontroller FLASH . 42
6.4.2 Update procedure description . 43

6.5 Remote External flash memory support via UART . 46
6.5.1 Bootloader setup . 46
6.5.2 Host side: UART flash server . 48
6.5.3 External flash update mechanism . 48

6.6 Encrypted external partitions . 48
6.6.1 Rationale . 48
6.6.2 Temporary key storage . 48
6.6.3 Libwolfboot API . 49
6.6.4 Symmetric encryption algorithms . 49
6.6.5 Chacha20-256 . 49
6.6.6 AES-CTR . 50
6.6.7 API usage in the application . 50

6.7 Application interface for interactions with the bootloader 50
6.7.1 Compiling and linking with libwolfboot . 50
6.7.2 API . 51

7 Integrating wolfBoot in an existing project 52
7.1 Required steps . 52
7.2 Examples provided . 52
7.3 Upgrading the firmware . 52

8 Troubleshooting 53
8.1 Python errors when signing a key . 53
8.2 Python errors in command line parser running keygen.py 53
8.3 Contact support . 53

COPYRIGHT ©2021 wolfSSL Inc. 4

1 INTRODUCTION

1 Introduction

wolfBoot is a portable, OS-agnostic, secure bootloader solution for 32-bit microcontrollers, relying on
wolfCrypt for firmware authentication, providing firmware update mechanisms.
Due to the minimalist design of the bootloader and the tiny HAL API, wolfBoot is completely inde-
pendent from any OS or bare-metal application, and can be easily ported and integrated in existing
embedded software projects to provide a secure firmware update mechanism.
Features

• Multi-slot partitioning of the flash device
• Integrity verification of the firmware image(s)
• Authenticity verification of the firmware image(s) using wolfCrypt’s Digital Signature Algorithms
(DSA)

• Minimalist hardware abstraction layer (HAL) interface to facilitate portability across different ven-
dors/MCUs

• Copy/swap images from secondary slots into the primary slots to consent firmware update op-
erations

• In-place chain-loading of the firmware image in the primary slot
• Support of Trusted Platform Module(TPM)
• Measured boot support, storing of the firmware image hash into a TPM Platform Configuration
Register(PCR)

Components
The wolfBoot Github repository contains the following components:

• the wolfBoot bootloader
• key generator and image signing tools (requires python3.x andwolfcrypt-py https://github.com/wolfSSL/wolfcrypt-
py)

• Baremetal test applications

COPYRIGHT ©2021 wolfSSL Inc. 5

https://www.wolfssl.com/products/wolfboot/
https://github.com/wolfSSL/wolfBoot

2 COMPILING WOLFBOOT

2 Compiling wolfBoot

WolfBoot is portable across different types of embedded systems. The platform-specific code is con-
tained in a single file under the hal directory, and implements the hardware-specific functions.
To enable specific compile options, use environment variables while calling make, e.g.
make CORTEX_M0=1
As an alternative, you can provide a .config file in the root directory of wolfBoot. Command line options
have priority on .config options, as long as .config options are defined using the ?= operator, e.g.:
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0x14000

2.1 Generate a new configuration
A new .config file with a set of default parameters can be generated by running make config. The
build script will ask to enter a default value for each configuration parameter. Enter confirm the current
value, indicated in between [].
Once a .config file is in place, it will change the default compile-time options when running make with-
out parameters.
.config can be modified with a text editor to alter the default options later on.

2.2 Platform selection
If supported natively, the target platform can be specified using the TARGET variable. Make will auto-
matically select the correct compile option, and include the corresponding HAL for the selected target.
For a list of the platforms currently supported, see the chapter on HAL.
To add a new platform, simply create the corresponding HAL driver and linker script file in the hal
directory.
Default option if none specified: TARGET=stm32f4
Some platforms will require extra options, specific for the architecture. By default, wolfBoot is com-
piled for ARM Cortex-M3/4/7. To compile for Cortex-M0, use:
CORTEX_M0=1

2.2.1 Flash partitions

The file include/target.h is generated according to the configured flash geometry, partitions size
and offset of the target system. The following values must be set to provide the desired flash config-
uration, either via the command line, or using the .config file:

• WOLFBOOT_SECTOR_SIZE
This variable determines the size of the physical sector on the flash memory. If areas with different
block sizes are used for the two partitions (e.g. update partition on an external flash), this variable
should indicate the size of the biggest sector shared between the two partitions.
WolfBoot uses this value as minimum unit when swapping the firmware images in place. For this
reason, this value is also used to set the size of the SWAP partition.

• WOLFBOOT_PARTITION_BOOT_ADDRESS

COPYRIGHT ©2021 wolfSSL Inc. 6

2.3 Bootloader features 2 COMPILING WOLFBOOT

This is the start address of the boot partition, aligned to the beginning of a new flash sector. The
application code starts after a further offset, equal to the partition header size (256B for Ed25519 and
ECC signature headers).

• WOLFBOOT_PARTITION_UPDATE_ADDRESS
This is the start address of the update partition. If an external memory is used via the EXT_FLASH
option, this variable contains the offset of the update partition from the beginning of the external
memory addressable space.

• WOLFBOOT_PARTITION_SWAP_ADDRESS
The address for the swap spaced used by wolfBoot to swap the two firmware images in place, in order
to perform a reversable update. The size of the SWAP partition is exactly one sector on the flash. If an
external memory is used, the variable contains the offset of the SWAP area from the beginning of its
addressable space.

• WOLFBOOT_PARTITION_SIZE
The size of the BOOT and UPDATE partition. The size is the same for both partitions.

2.3 Bootloader features
A number of characteristics can be turned on/off during wolfBoot compilation. Bootloader size, per-
formance and activated features are affected by compile-time flags.

2.3.1 Change DSA algorithm

By default, wolfBoot is compiled to use Ed25519 DSA. The implementation of ed25519 is smaller, while
giving a good compromise in terms of boot-up time.
Better performance can be achieved using ECDSA with curve p-256. To activate ECC256 support, use
SIGN=ECC256
when invoking make.
RSA is also supported, with different key length. To activate RSA2048 or RSA4096, use:
SIGN=RSA2048
or
SIGN=RSA4096
respectively.
Ed448 is also supported via SIGN=ED448.
The default option, if no value is provided for the SIGN variable, is
SIGN=ED25519
Changing the DSA algorithmwill also result in compiling a different set of tools for key generation and
firmware signature.
Find the corresponding key generation and firmware signing tools in the tools directory.
It’s possible to disable authentication of the firmware image by explicitly using:
SIGN=NONE
in the Makefile commandline. This will compile a minimal bootloader with no support for public-key
authenticated secure boot.

COPYRIGHT ©2021 wolfSSL Inc. 7

2.3 Bootloader features 2 COMPILING WOLFBOOT

2.3.2 Incremental updates

wolfBoot support incremental updates. To enable this feature, compile with DELTA_UPDATES=1.
An additional file is generated when the sign tool is invoked with the --delta option, containing only
the differences between the old firmware to replace, currently running on the target, and the new
version.
For more information and examples, see the firmware update section.

2.3.3 Enable debug symbols

To debug the bootloader, simply compile with DEBUG=1. The size of the bootloade will increase
consistently, so ensure that you have enough space at the beginning of the flash before WOLF-
BOOT_PARTITION_BOOT_ADDRESS.

2.3.4 Disable interrupt vector relocation

On some platforms, it might be convenient to avoid the interrupt vector relocation before boot-up.
This is required when a component on the system already manages the interrupt relocation at a dif-
ferent stage, or on these platform that do not support interrupt vector relocation.
To disable interrupt vector table relocation, compile with VTOR=0. By default, wolfBoot will relocate
the interrupt vector by setting the offset in the vector relocation offset register (VTOR).

2.3.5 Limit stack usage

By default, wolfBoot does not require any memory allocation. It does this by performing all the oper-
ations using the stack. Although the stack space used by the algorithms can be predicted at compile
time, the amount of stack space be relatively big, depending on the algorithm selected.
Some targets offer limited amount of RAM to use as stack space, either in general, or in a configuration
dedicated for the bootloader stage.
In these cases, it might be useful to activate WOLFBOOT_SMALL_STACK=1. With this option, a fixed-
size pool is created at compile time to assist the allocation of the object needed by the cryptography
implementation. When compiled with WOLFBOOT_SMALL_STACK=1, wolfBoot reduces the stack usage
considerably, and simulates dynamic memory allocations by assigning dedicated, statically allocated,
pre-sized memory areas.

2.3.6 Disable Backup of current running firmware

Optionally, it is possible to disable the backup copy of the current running firmware upon the instal-
lation of the update. This implies that no fall-back mechanism is protecting the target from a faulty
firmware installation, but may be useful in some cases where it is not possible to write on the update
partition from the bootloader. The associated compile-time option is
DISABLE_BACKUP=1

2.3.7 Enable workaround for ‘write once’ flash memories

On some microcontrollers, the internal flash memory does not allow subsequent writes (adding ze-
roes) to a sector, after the entire sector has been erased. WolfBoot relies on the mechanism of adding
zeroes to the ‘flags’ fields at the end of both partitions to provide a fail-safe swap mechanism.
To enable the workaround for ‘write once’ internal flash, compile with
NVM_FLASH_WRITEONCE=1

COPYRIGHT ©2021 wolfSSL Inc. 8

2.3 Bootloader features 2 COMPILING WOLFBOOT

warning When this option is enabled, the fail-safe swap is not guaranteed, i.e. the microcontroller
cannot be safely powered down or restarted during a swap operation.

2.3.8 Allow version roll-back

WolfBoot will not allow updates to a firmware with a version number smaller than the current one. To
allow downgrades, compile with ALLOW_DOWNGRADE=1.
Warning: this option will disable version checking before the updates, thus exposing the system to
potential forced downgrade attacks.

2.3.9 Enable optional support for external flash memory

WolfBoot can be compiled with the makefile option EXT_FLASH=1. When the external flash support is
enabled, update and swap partitions can be associated to an externalmemory, andwill use alternative
HAL function for read/write/erase access. To associate the update or the swap partition to an external
memory, define PART_UPDATE_EXT and/or PART_SWAP_EXT, respectively. By default, the makefile
assumes that if an external memory is present, both PART_UPDATE_EXT and PART_SWAP_EXT are
defined.
If the NO_XIP=1makefile option is present, PART_BOOT_EXT is assumed too, as no execute-in-place is
available on the system. This is typically the case of MMU system (e.g. Cortex-A) where the operating
system image(s) are position-independent ELF images stored in a non-executable non-volatilememory,
and must be copied in RAM to boot after verification.
When externalmemory is used, the HAL APImust be extended to definemethods to access the custom
memory. Refer to the HAL chapter for the description of the ext_flash_* API.

2.3.9.1 SPI devices In combinationwith the EXT_FLASH=1 configuration parameter, it is possible to
use a platform-specific SPI drivers, e.g. to access an external SPI flashmemory. By compiling wolfBoot
with the makefile option SPI_FLASH=1, the external memory is directly mapped to the additional SPI
layer, so the user does not have to define the ext_flash_* functions.
SPI functions, instead, must be defined. Example SPI drivers are available for multiple platforms in
the hal/spi directory.

2.3.9.2 UART bridge towards neighbor systems Another alternative available to map external de-
vices consists in enabling a UART bridge towards a neighbor system. The neighbor system must ex-
pose a service through the UART interface that is compatible with the wolfBoot protocol.
In the same way as for SPI devices, the ext_flash_* API is automatically defined by wolfBoot when
the option UART_FLASH=1 is used.
For more details, see the section Remote External flash memory support via UART

2.3.9.3 Encryption support for external partitions Whenupdate and swap partitions aremapped
to an external device using EXT_FLASH=1, either in combinationwith SPI_FLASH, UART_FLASH, or any
custom external mapping, it is possible to enable ChaCha20, Aes128 or Aes256 encryption when ac-
cessing those partition from the bootloader. The update images must be pre-encrypted at the source
using the key tools, and wolfBoot should be instructed to use a temporary ChaCha20 symmetric key
to access the content of the updates.
For more details about this optional feature, please refer to the Encrypted external partitions section.

COPYRIGHT ©2021 wolfSSL Inc. 9

2.3 Bootloader features 2 COMPILING WOLFBOOT

2.3.10 Executing flash access code from RAM

On some platform, flash access code requires to be executed from RAM, to avoid conflict e.g. when
writing to the same device where wolfBoot is executing, or when changing the configuration of the
flash itself.
Tomove all the code accessing the internal flash for writing, into a section in RAM, use the compile time
option RAM_CODE=1 (on some hardware configurations this is required for the bootloader to access
the flash for writing).

2.3.11 Enable Dual-bank hardware-assisted swapping

When supported by the target platform, hardware-assisted dual-bank swapping can be used to per-
form updates. To enable this functionality, use DUALBANK_SWAP=1. Currently, only STM32F76x and
F77x support this feature.

2.3.12 Store UPDATE partition flags in a sector in the BOOT partition

By default, wolfBoot keeps track of the status of the update procedure to the single sectors in a spe-
cific area at the end of each partition, dedicated to store and retrieve a set of flags associated to the
partition itself.
In some cases itmight be helpful to store the status flags related to theUPDATEpartition and its sectors
in the internal flash, alongside with the same set of flags used for the BOOT partition. By compiling
wolfBoot with the FLAGS_HOME=1 makefile option, the flags associated to the UPDATE partition are
stored in the BOOT partition itself.
While on one hand this option slightly reduces the space available in the BOOT partition to store the
firmware image, it keeps all the flags in the BOOT partition.

2.3.13 Invert logic of flags

Bydefault, mostNVMs set the content of erasedpages to0xFF (all ones). Some FLASHmemorymodels
use inverted logic for erased page, setting the content to 0x00 (all zeroes) after erase. For these special
cases, the option FLAGS_INVERT = 1 can be used tomodify the logic of the partition/sector flags used
in wolfBoot.
Note: if you are using an external FLASH (e.g. SPI) in combination with a flash with inverted logic,
ensure that you store all the flags in one partition, by using the FLAGS_HOME=1 option described above.

2.3.14 Using Mac OS/X

If you see 0xC3 0xBF (C3BF) repeated in your factory.bin then your OS is using Unicode characters.
The “tr” command for assembling the 0xFF padding between "bootloader" ... 0xFF ... "ap-
plication" = factory.bin, which requires the “C” locale.
Set this in your terminal
LANG=
LC_COLLATE="C"
LC_CTYPE="C"
LC_MESSAGES="C"
LC_MONETARY="C"
LC_NUMERIC="C"
LC_TIME="C"
LC_ALL=

COPYRIGHT ©2021 wolfSSL Inc. 10

2.3 Bootloader features 2 COMPILING WOLFBOOT

Then run the normal make steps.

2.3.15 Enabling mitigations against glitches and fault injections

One type of attacks against secure boot mechanisms consists in skipping the execution of authentica-
tion and validation steps by injecting faults into the CPU through forced voltage or clock anomalies,
or electromagnetic interferences at close range.
Extra protection from specific attacks aimed to skip CPU instructions can be enabled using ARMOR=1.
This feature is currently only available for ARM Cortex-M targets.

COPYRIGHT ©2021 wolfSSL Inc. 11

3 TARGETS

3 Targets

This chapter describes configuration of supported targets.

3.1 Supported Targets
• Cortex-A53 / Raspberry PI 3
• Cypress PSoC-6
• Nordic nRF52840
• NXP LPC54xxx
• NXP iMX-RT
• NXP Kinetis
• NXP T2080 PPC
• SiFive HiFive1 RISC-V
• STM32F4
• STM32L4
• STM32F7
• STM32G0
• STM32H7
• STM32L5
• STM32U5
• STM32L0
• STM32WB55
• TI Hercules TMS570LC435
• Xilinx Zynq UltraScale
• Qemu x86_64 UEFI

3.2 STM32F4
Example 512KB partitioning on STM32-F407
The example firmware provided in the test-app is configured to boot from the primary partition
starting at address 0x20000. The flash layout is provided by the default example using the following
configuration in target.h:
#define WOLFBOOT_SECTOR_SIZE 0x20000
#define WOLFBOOT_PARTITION_SIZE 0x20000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x20000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x40000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x60000
This results in the following partition configuration:
This configuration demonstrates one of the possible layouts, with the slots aligned to the beginning
of the physical sector on the flash.
The entry point for all the runnable firmware images on this target will be 0x20100, 256 Bytes after
the beginning of the first flash partition. This is due to the presence of the firmware image header at
the beginning of the partition, as explained more in details in Firmware image
In this particular case, due to the flash geometry, the swap space must be as big as 128KB, to account
for proper sector swapping between the two images.
On other systems, the SWAP space can be as small as 512B, if multiple smaller flash blocks are used.

COPYRIGHT ©2021 wolfSSL Inc. 12

3.3 STM32L4 3 TARGETS

Figure 1: example partitions

More information about the geometry of the flash and in-application programming (IAP) can be found
in the manufacturer manual of each target device.

3.2.1 STM32F4 Programming

st-flash write factory.bin 0x08000000

3.2.2 STM32F4 Debugging

1. Start GDB server
OpenOCD: openocd --file ./config/openocd/openocd_stm32f4.cfgOR ST-Link: st-util -p
3333

2. Start GDB Client
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x20100
mon reset init
b main
c

3.3 STM32L4
Example 1MB partitioning on STM32L4

• Sector size: 4KB
• Wolfboot partition size: 40 KB
• Application partition size: 488 KB

#define WOLFBOOT_SECTOR_SIZE 0x1000 /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x0800A000
#define WOLFBOOT_PARTITION_SIZE 0x7A000 /* 488 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08084000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x080FE000

3.4 STM32L5
3.4.1 Scenario 1: TrustZone Enabled

3.4.1.1 Example Description The implementation shows how to switch from secure application to
non-secure application, thanks to the system isolation performed, which splits the internal Flash and

COPYRIGHT ©2021 wolfSSL Inc. 13

3.4 STM32L5 3 TARGETS

internal SRAM memories into two halves: - the first half for secure application - the second half for
non-secure application

3.4.1.2 Hardware and Software environment
• This example runs on STM32L562QEIxQ devices with security enabled (TZEN=1).
• This example has been tested with STMicroelectronics STM32L562E-DK (MB1373)
• User Option Bytes requirement (with STM32CubeProgrammer tool - see below for instructions)

TZEN = 1 System with TrustZone-M enabled
DBANK = 1 Dual bank mode
SECWM1_PSTRT=0x0 SECWM1_PEND=0x7F All 128 pages of internal Flash Bank1 set

as secure
SECWM2_PSTRT=0x1 SECWM2_PEND=0x0 No page of internal Flash Bank2 set as

secure, hence Bank2 non-secure

• NOTE: STM32CubeProgrammer V2.3.0 is required (v2.4.0 has a known bug for STM32L5)

3.4.1.3 How to use it
1. cp ./config/examples/stm32l5.config .config
2. make TZEN=1
3. Prepare board with option bytes configuration reported above

• STM32_Programmer_CLI -c port=swd mode=hotplug -ob TZEN=1 DBANK=1
• STM32_Programmer_CLI -c port=swd mode=hotplug -ob SECWM1_PSTRT=0x0
SECWM1_PEND=0x7F SECWM2_PSTRT=0x1 SECWM2_PEND=0x0

4. flash wolfBoot.bin to 0x0c00 0000
• STM32_Programmer_CLI -c port=swd -d ./wolfboot.bin 0x0C000000

5. flash .\test-app\image_v1_signed.bin to 0x0804 0000
• STM32_Programmer_CLI -c port=swd -d ./test-app/image_v1_signed.bin
0x08040000

6. RED LD9 will be on
• NOTE: STM32_Programmer_CLI Default Locations
• Windows: C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_CLI.exe
• Linux: /usr/local/STMicroelectronics/STM32Cube/STM32CubeProgrammer/bin/STM32_Programmer_CLI
• MacOS/X:/Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/STM32_Programmer_CLI

3.4.2 Scenario 2: Trustzone Disabled

3.4.2.1 Example Description The implementation shows how to use STM32L5xx in DUAL_BANK
mode, with TrustZone disabled. TheDUAL_BANKoption is only available on this targetwhen TrustZone
is disabled (TZEN = 0).
The flash memory is segmented into two different banks:

• Bank 0: (0x08000000)
• Bank 1: (0x08040000)

Bank 0 contains the bootloader at address 0x08000000, and the application at address 0x08040000.
When a valid image is available at the same offset in Bank 1, a candidate is selected for booting be-
tween the two valid images. A firmware update can be uploaded at address 0x08048000.
The example configuration is available in/config/examples/stm32l5-nonsecure-dualbank.config.
To run flash ./test-app/image.bin to 0x08000000. - STM32_Programmer_CLI -c port=swd -d
./test-app/image.bin 0x08000000

COPYRIGHT ©2021 wolfSSL Inc. 14

3.5 STM32U5 3 TARGETS

Or program each partition using: 1. flash wolfboot.bin to 0x08000000: - STM32_Programmer_CLI
-c port=swd -d ./wolfboot.elf 2. flash wolfBoot.bin to 0x0c00 0000 - STM32_Programmer_CLI
-c port=swd -d ./test-app/image_v1_signed.bin 0x08008000
RED LD9 will be on indicating successful boot ()

3.4.3 Debugging

Use make DEBUG=1 and reload firmware.
• STM32CubeIDE v.1.3.0 required
• Run the debugger via:

Linux:
ST-LINK_gdbserver -d -cp /opt/st/stm32cubeide_1.3.0/plugins/com.st.stm32cube.

ide.mcu.externaltools.cubeprogrammer.linux64_1.3.0.202002181050/tools/bin -
e -r 1 -p 3333`

Max OS/X:
sudo ln -s /Application-

s/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-
gdb-
server.macos64_1.6.0.202101291314/tools/bin/native/mac_x64/libSTLinkUSBDriver.dylib
/usr/local/lib/libSTLinkUSBDriver.dylib

↪
↪
↪
↪

/Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-
gdb-server.macos64_1.6.0.202101291314/tools/bin/ST-LINK_gdbserver -d -cp
./Contents/Eclipse/plugins/-
com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.macos64_1.6.0.202101291314/tools/bin
-e -r 1 -p 3333

↪
↪
↪
↪

• Connect with arm-none-eabi-gdb
wolfBoot has a .gdbinit to configure
arm-none-eabi-gdb
add-symbol-file test-app/image.elf
mon reset init

3.5 STM32U5
3.5.1 Scenario 1: TrustZone Enabled

3.5.1.1 Example Description The implementation shows how to switch from secure application to
non-secure application, thanks to the system isolation performed, which splits the internal Flash and
internal SRAM memories into two halves: - the first half for secure application - the second half for
non-secure application

3.5.1.2 Hardware and Software environment
• This example runs on STM32U585AII6Q devices with security enabled (TZEN=1).
• This example has been tested with STMicroelectronics B-U585I-IOT02A (MB1551)
• User Option Bytes requirement (with STM32CubeProgrammer tool - see below for instructions)

COPYRIGHT ©2021 wolfSSL Inc. 15

3.5 STM32U5 3 TARGETS

TZEN = 1 System with TrustZone-M enabled
DBANK = 1 Dual bank mode
SECWM1_PSTRT=0x0 SECWM1_PEND=0x7F All 128 pages of internal Flash Bank1 set

as secure
SECWM2_PSTRT=0x1 SECWM2_PEND=0x0 No page of internal Flash Bank2 set as

secure, hence Bank2 non-secure

• NOTE: STM32CubeProgrammer V2.8.0 or newer is required

3.5.1.3 How to use it
1. cp ./config/examples/stm32u5.config .config
2. make TZEN=1
3. Prepare board with option bytes configuration reported above

• STM32_Programmer_CLI -c port=swd mode=hotplug -ob TZEN=1 DBANK=1
• STM32_Programmer_CLI -c port=swd mode=hotplug -ob SECWM1_PSTRT=0x0
SECWM1_PEND=0x7F SECWM2_PSTRT=0x1 SECWM2_PEND=0x0

4. flash wolfBoot.bin to 0x0c00 0000
• STM32_Programmer_CLI -c port=swd -d ./wolfboot.bin 0x0C000000

5. flash .\test-app\image_v1_signed.bin to 0x0804 0000
• STM32_Programmer_CLI -c port=swd -d./test-app/image_v1_signed.bin 0x08100000‘

6. RED LD9 will be on
• NOTE: STM32_Programmer_CLI Default Locations
• Windows: C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_CLI.exe
• Linux: /usr/local/STMicroelectronics/STM32Cube/STM32CubeProgrammer/bin/STM32_Programmer_CLI
• MacOS/X:/Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/STM32_Programmer_CLI

3.5.2 Scenario 2: TrustZone Disabled

3.5.2.1 Example Description The implementation shows how to use STM32U5xx in DUAL_BANK
mode, with TrustZone disabled. TheDUAL_BANKoption is only available on this targetwhen TrustZone
is disabled (TZEN = 0).
The flash memory is segmented into two different banks:

• Bank 0: (0x08000000)
• Bank 1: (0x08100000)

Bank 0 contains the bootloader at address 0x08000000, and the application at address 0x08100000.
When a valid image is available at the same offset in Bank 1, a candidate is selected for booting be-
tween the two valid images. A firmware update can be uploaded at address 0x08108000.
The example configuration is available inconfig/examples/stm32u5-nonsecure-dualbank.config.
To run flash ./test-app/image.bin to 0x08000000. - STM32_Programmer_CLI -c port=swd -d
./test-app/image.bin 0x08000000
Or program each partition using: 1. flash wolfboot.bin to 0x08000000: - STM32_Programmer_CLI
-c port=swd -d ./wolfboot.elf 2. flashimage_v1_signed.bin to 0x08008000 -STM32_Programmer_CLI
-c port=swd -d ./test-app/image_v1_signed.bin 0x08008000
RED LD9 will be on indicating successful boot ()

3.5.3 Debugging

Use make DEBUG=1 and reload firmware.
• STM32CubeIDE v.1.7.0 required

COPYRIGHT ©2021 wolfSSL Inc. 16

3.6 STM32L0 3 TARGETS

• Run the debugger via:
Linux:
ST-LINK_gdbserver -d -cp /opt/st/stm32cubeide_1.3.0/plugins/com.st.stm32cube.

ide.mcu.externaltools.cubeprogrammer.linux64_1.3.0.202002181050/tools/bin -
e -r 1 -p 3333`

Max OS/X:
sudo ln -s /Application-

s/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-
gdb-
server.macos64_1.6.0.202101291314/tools/bin/native/mac_x64/libSTLinkUSBDriver.dylib
/usr/local/lib/libSTLinkUSBDriver.dylib

↪
↪
↪
↪

/Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-
gdb-server.macos64_1.6.0.202101291314/tools/bin/ST-LINK_gdbserver -d -cp
./Contents/Eclipse/plugins/-
com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.macos64_1.6.0.202101291314/tools/bin
-e -r 1 -p 3333

↪
↪
↪
↪

Win:
ST-LINK_gdbserver -d -cp C:\ST\STM32CubeIDE_1.7.0\STM32CubeIDE\plugins\com.st.

stm32cube.ide.mcu.externaltools.cubeprogrammer.win32_2.0.0.202105311346\
tools\bin -e -r 1 -p 3333`

• Connect with arm-none-eabi-gdb
wolfBoot has a .gdbinit to configure
arm-none-eabi-gdb
add-symbol-file test-app/image.elf
mon reset init

3.6 STM32L0
Example 192KB partitioning on STM32-L073
This device is capable of erasing single flash pages (256B each).
However, we choose to use a logic sector size of 4KB for the swaps, to limit the amount of writes to
the swap partition.
The proposed geometry in this example target.h uses 32KB for wolfBoot, and two partitions of 64KB
each, leaving room for up to 8KB to use for swap (4K are being used here).
#define WOLFBOOT_SECTOR_SIZE 0x1000 /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x8000
#define WOLFBOOT_PARTITION_SIZE 0x10000 /* 64 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x18000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x28000

3.6.1 STM32L0 Building

Use make TARGET=stm32l0. The option CORTEX_M0 is automatically selected for this target.

COPYRIGHT ©2021 wolfSSL Inc. 17

3.7 STM32G0 3 TARGETS

3.7 STM32G0
Supports STM32G0x0x0/STM32G0x1.
Example 128KB partitioning on STM32-G070:

• Sector size: 2KB
• Wolfboot partition size: 32KB
• Application partition size: 44 KB

#define WOLFBOOT_SECTOR_SIZE 0x800 /* 2 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x08008000
#define WOLFBOOT_PARTITION_SIZE 0xB000 /* 44 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08013000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x0801E000

3.7.1 Building STM32G0

Reference configuration (see /config/examples/stm32g0.config. You can copy this to wolfBoot
root as .config: cp ./config/examples/stm32g0.config .config. To build you can use make.
The TARGET for this is stm32g0: make TARGET=stm32g0. The option CORTEX_M0 is automatically
selected for this target. The option NVM_FLASH_WRITEONCE=1 is mandatory on this target, since the
IAP driver does not support multiple writes after each erase operation.
This target also supports securememory protectionon thebootloader regionusing theFLASH_CR:SEC_PROT
and FLASH_SECT:SEC_SIZE registers. This is the number of 2KB pages to block access to from the
0x8000000 base address.
STM32_Programmer_CLI -c port=swd mode=hotplug -ob SEC_SIZE=0x10

For RAMFUNCTION support (required for SEC_PROT) make sure RAM_CODE=1.
Compile requirements: make TARGET=stm32g0 NVM_FLASH_WRITEONCE=1

3.7.2 Debugging STM32G0

Theoutput is a singlefactory.bin that includeswolfboot.bin andtest-app/image_v1_signed.bin
combined together. This should be programmed to the flash start address 0x08000000.
Flash using the STM32CubeProgrammer CLI:
STM32_Programmer_CLI -c port=swd -d factory.bin 0x08000000

3.7.3 STM32G0 Debugging

Use make DEBUG=1 and program firmware again.
Start GDB server on port 3333:
ST-LINK_gdbserver -d -e -r 1 -p 3333
OR
st-util -p 3333

wolfBoot has a .gdbinit to configure GDB
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08008100
mon reset init

COPYRIGHT ©2021 wolfSSL Inc. 18

3.8 STM32WB55 3 TARGETS

3.8 STM32WB55
Example partitioning on Nucleo-68 board:

• Sector size: 4KB
• Wolfboot partition size: 32 KB
• Application partition size: 128 KB

#define WOLFBOOT_SECTOR_SIZE 0x1000 /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x8000
#define WOLFBOOT_PARTITION_SIZE 0x20000 /* 128 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x28000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x48000

3.8.1 STM32WB55 Building

Use make TARGET=stm32wb.
The option NVM_FLASH_WRITEONCE=1 is mandatory on this target, since the IAP driver does not sup-
port multiple writes after each erase operation.
Compile with:
make TARGET=stm32wb NVM_FLASH_WRITEONCE=1

3.8.2 STM32WB55 with OpenOCD

openocd --file ./config/openocd/openocd_stm32wbx.cfg
telnet localhost 4444
reset halt
flash write_image unlock erase factory.bin 0x08000000
flash verify_bank 0 factory.bin
reset

3.8.3 STM32WB55 with ST-Link

git clone https://github.com/stlink-org/stlink.git
cd stlink
cmake .
make
sudo make install

st-flash write factory.bin 0x08000000

Start GDB server
st-util -p 3333

3.8.4 STM32WB55 Debugging

Use make DEBUG=1 and reload firmware.
wolfBoot has a .gdbinit to configure
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08008100
mon reset init

COPYRIGHT ©2021 wolfSSL Inc. 19

3.9 SiFive HiFive1 RISC-V 3 TARGETS

3.9 SiFive HiFive1 RISC-V
3.9.1 Features

• E31 RISC-V 320MHz 32-bit processor
• Onboard 16KB scratchpad RAM
• External 4MB QSPI Flash

3.9.2 Default Linker Settings

• FLASH: Address 0x20000000, Len 0x6a120 (424 KB)
• RAM: Address 0x80000000, Len 0x4000 (16 KB)

3.9.3 Stock bootloader

Start Address: 0x20000000 is 64KB. Provides a “double tap” reset feature to halt boot and allow debug-
ger to attach for reprogramming. Press reset button, when green light comes on press reset button
again, then board will flash red.

3.9.4 Application Code

Start Address: 0x20010000

3.9.5 wolfBoot configuration

The default wolfBoot configuration will add a second stage bootloader, leaving the stock “double tap”
bootloader as a fallback for recovery. Your production implementation should replace this and parti-
tion addresses in target.h will need updated, so they are 0x10000 less.
To set the Freedom SDK location use FREEDOM_E_SDK=~/src/freedom-e-sdk.
For testing wolfBoot here are the changes required:

1. Makefile arguments:
• ARCH=RISCV
• TARGET=hifive1

make ARCH=RISCV TARGET=hifive1 RAM_CODE=1 clean
make ARCH=RISCV TARGET=hifive1 RAM_CODE=1

If using the riscv64-unknown-elf- cross compiler you can add CROSS_COMPILE=riscv64-
unknown-elf- to your make or modify arch.mk as follows:
ifeq ($(ARCH),RISCV)
- CROSS_COMPILE:=riscv32-unknown-elf-
+ CROSS_COMPILE:=riscv64-unknown-elf-

2. include/target.h
Bootloader Size: 0x10000 (64KB) Application Size 0x40000 (256KB) Swap Sector Size: 0x1000 (4KB)
#define WOLFBOOT_SECTOR_SIZE 0x1000
#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x20020000

#define WOLFBOOT_PARTITION_SIZE 0x40000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x20060000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x200A0000

COPYRIGHT ©2021 wolfSSL Inc. 20

3.10 STM32F7 3 TARGETS

3.9.6 Build Options

• To use ECC instead of ED25519 use make argument SIGN=ECC256
• To output wolfboot as hex for loading with JLink use make argument wolfboot.hex

3.9.7 Loading

Loading with JLink:
JLinkExe -device FE310 -if JTAG -speed 4000 -jtagconf -1,-1 -autoconnect 1
loadbin factory.bin 0x20010000
rnh

3.9.8 Debugging

Debugging with JLink:
In one terminal: JLinkGDBServer -device FE310 -port 3333
In another terminal:
riscv64-unknown-elf-gdb wolfboot.elf -ex "set remotetimeout 240" -ex "target

extended-remote localhost:3333"
add-symbol-file test-app/image.elf 0x20020100

3.10 STM32F7
The STM32-F76x and F77x offer dual-bank hardware-assisted swapping. The flash geometry must
be defined beforehand, and wolfBoot can be compiled to use hardware assisted bank-swapping to
perform updates.
Example 2MB partitioning on STM32-F769:

• Dual-bank configuration
BANK A: 0x08000000 to 0x080FFFFFF (1MB) BANK B: 0x08100000 to 0x081FFFFFF (1MB)

• WolfBoot executes from BANK A after reboot (address: 0x08000000)
• Boot partition @ BANK A + 0x20000 = 0x08020000
• Update partition @ BANK B + 0x20000 = 0x08120000
• Application entry point: 0x08020100

#define WOLFBOOT_SECTOR_SIZE 0x20000
#define WOLFBOOT_PARTITION_SIZE 0x40000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x08020000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08120000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x0 /* Unused, swap is hw-assisted

*/↪

3.10.1 Build Options

To activate the dual-bank hardware-assisted swap feature on STM32F76x/77x, use the DUAL-
BANK_SWAP=1 compile time option. Some code requires to run in RAM during the swapping of the
images, so the compile-time option RAMCODE=1 is also required in this case.
Dual-bank STM32F7 build can be built using:
make TARGET=stm32f7 DUALBANK_SWAP=1 RAM_CODE=1

COPYRIGHT ©2021 wolfSSL Inc. 21

3.10 STM32F7 3 TARGETS

3.10.2 Loading the firmware

To switch between single-bank (1x2MB) and dual-bank (2 x 1MB) mode mapping, this stm32f7-
dualbank-tool can be used. Before starting openocd, switch the flash mode to dualbank (e.g. via make
dualbank using the dualbank tool).
OpenOCD configuration for flashing/debugging, can be copied into openocd.cfg in your working
directory:
source [find interface/stlink.cfg]
source [find board/stm32f7discovery.cfg]
$_TARGETNAME configure -event reset-init {

mmw 0xe0042004 0x7 0x0
}
init
reset
halt

OpenOCD can be either run in background (to allow remote GDB and monitor terminal connections),
or directly from command line, to execute terminal scripts.
If OpenOCD is running, local TCP port 4444 can be used to access an interactive terminal prompt.
telnet localhost 4444
Using the following openocd commands, the initial images for wolfBoot and the test application are
loaded to flash in bank 0:
flash write_image unlock erase wolfboot.bin 0x08000000
flash verify_bank 0 wolfboot.bin
flash write_image unlock erase test-app/image_v1_signed.bin 0x08020000
flash verify_bank 0 test-app/image_v1_signed.bin 0x20000
reset
resume 0x0000001

To sign the same application image as new version (2), use the python script sign.py provided:
tools/keytools/sign.py test-app/image.bin wolfboot_signing_private_key.der 2

From OpenOCD, the updated image (version 2) can be flashed to the second bank:
flash write_image unlock erase test-app/image_v2_signed.bin 0x08120000
flash verify_bank 0 test-app/image_v1_signed.bin 0x20000

Upon reboot, wolfboot will elect the best candidate (version 2 in this case) and authenticate the image.
If the accepted candidate image resides on BANK B (like in this case), wolfBoot will perform one bank
swap before booting.
The bank-swap operation is immediate and a SWAP image is not required in this case. Fallback mech-
anism can rely on a second choice (older firmware) in the other bank.

3.10.3 STM32F7 Debugging

Debugging with OpenOCD:
Use the OpenOCD configuration from the previous section to run OpenOCD.
From another console, connect using gdb, e.g.:
arm-none-eabi-gdb
(gdb) target remote:3333

COPYRIGHT ©2021 wolfSSL Inc. 22

https://github.com/danielinux/stm32f7-dualbank-tool
https://github.com/danielinux/stm32f7-dualbank-tool

3.11 STM32H7 3 TARGETS

3.11 STM32H7
The STM32H7 flash geometry must be defined beforehand.
Use the “make config” operation to generate a .config file or copy the template using cp ./con-
fig/examples/stm32h7.config .config.
Example 2MB partitioning on STM32-H753:
WOLFBOOT_SECTOR_SIZE?=0x20000
WOLFBOOT_PARTITION_SIZE?=0xD0000
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0x8020000
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x80F0000
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0x81C0000

3.11.1 Build Options

The STM32H7 build can be built using:
make TARGET=stm32h7 SIGN=ECC256

3.11.2 STM32H7 Programming

ST-Link Flash Tools:
st-flash write factory.bin 0x08000000

OR
st-flash write wolfboot.bin 0x08000000
st-flash write test-app/image_v1_signed.bin 0x08020000

3.11.3 STM32H7 Testing

To sign the same application image as new version (2), use the sign tools
Python: tools/keytools/sign.py --ecc256 --sha256 test-app/image.bin wolf-
boot_signing_private_key.der 2 C Tool: tools/keytools/sign --ecc256 --sha256
test-app/image.bin wolfboot_signing_private_key.der 2
Flash the updated version 2 image: st-flash write test-app/image_v2_signed.bin
0x08120000
Upon reboot, wolfboot will elect the best candidate (version 2 in this case) and authenticate the image.
If the accepted candidate image resides on BANK B (like in this case), wolfBoot will perform one bank
swap before booting.

3.11.4 STM32H7 Debugging

1. Start GDB server
ST-Link: st-util -p 3333

2. Start GDB Client from wolfBoot root:
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08020000
mon reset init
b main
c

COPYRIGHT ©2021 wolfSSL Inc. 23

3.12 NXP LPC54xxx 3 TARGETS

3.12 NXP LPC54xxx
3.12.1 Build Options

The LPC54xxx build can be obtained by specifying the CPU type and the MCUXpresso SDK path at
compile time.
The following configuration has been tested against LPC54606J512BD208:
make TARGET=lpc SIGN=ECC256 MCUXPRESSO?=/path/to/LPC54606J512/SDK

MCUXPRESSO_CPU?=LPC54606J512BD208 \
MCUXPRESSO_DRIVERS?=$(MCUXPRESSO)/devices/LPC54606 \
MCUXPRESSO_CMSIS?=$(MCUXPRESSO)/CMSIS

3.12.2 Loading the firmware

Loading with JLink (example: LPC54606J512)
JLinkExe -device LPC606J512 -if SWD -speed 4000
erase
loadbin factory.bin 0
r
h

3.12.3 Debugging with JLink

JLinkGDBServer -device LPC606J512 -if SWD -speed 4000 -port 3333

Then, from another console:
arm-none-eabi-gdb wolfboot.elf -ex "target remote localhost:3333"
(gdb) add-symbol-file test-app/image.elf 0x0000a100

3.13 Cortex-A53 / Raspberry PI 3 (experimental)
Tested using https://github.com/raspberrypi/linux on Ubuntu 20
Prerequsites: sudo apt install gcc-aarch64-linux-gnu qemu-system-aarch64

3.13.1 Compiling the kernel

• Get raspberry-pi linux kernel:
git clone https://github.com/raspberrypi/linux linux-rpi -b rpi-4.19.y --depth

=1

• Build kernel image:
export wolfboot_dir=`pwd`
cd linux-rpi
patch -p1 < $wolfboot_dir/tools/wolfboot-rpi-devicetree.diff
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcmrpi3_defconfig
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

• Copy Image and .dtb to the wolfboot directory
cp ./arch/arm64/boot/Image arch/arm64/boot/dts/broadcom/bcm2710-rpi-3-b.dtb

$wolfboot_dir
cd $wolfboot_dir

COPYRIGHT ©2021 wolfSSL Inc. 24

3.14 Xilinx Zynq UltraScale 3 TARGETS

3.13.2 Testing with qemu-system-aarch64

• Build wolfboot using the example configuration (RSA4096, SHA3)
cp config/examples/raspi3.config .config
make clean
make wolfboot.bin CROSS_COMPILE=aarch64-linux-gnu-

• Sign Linux kernel image
make keytools
./tools/keytools/sign --rsa4096 --sha3 Image wolfboot_signing_private_key.der

1

• Compose the image
tools/bin-assemble/bin-assemble wolfboot_linux_raspi.bin 0x0 wolfboot.bin \

0xc0000 Image_v1_signed.bin
dd if=bcm2710-rpi-3-b.dtb of=wolfboot_linux_raspi.bin bs=1 seek=128K conv=

notrunc

• Test boot using qemu
qemu-system-aarch64 -M raspi3b -m 1024 -serial stdio -kernel

wolfboot_linux_raspi.bin -cpu cortex-a53

3.14 Xilinx Zynq UltraScale
Xilinx UltraScale+ ZCU102 (Aarch64)
Build configuration options (.config):
TARGET=zynq
ARCH=AARCH64
SIGN=RSA4096
HASH=SHA3

3.14.1 QNX

cd ~
source qnx700/qnxsdp-env.sh
cd wolfBoot
cp ./config/examples/zynqmp.config .config
make clean
make CROSS_COMPILE=aarch64-unknown-nto-qnx7.0.0-

3.14.1.1 Debugging qemu-system-aarch64 -M raspi3 -kernel /path/to/wolfboot/fac-
tory.bin -serial stdio -gdb tcp::3333 -S

3.14.1.2 Signing tools/keytools/sign.py --rsa4096 --sha3 /srv/linux-rpi4/vmlinux.bin
wolfboot_signing_private_key.der 1

3.15 Cypress PSoC-6
The Cypress PSoC 62S2 is a dual-core Cortex-M4 & Cortex-M0+ MCU. The secure boot process is man-
aged by the M0+. WolfBoot can be compiled as second stage flash bootloader to manage application
verification and firmware updates.

COPYRIGHT ©2021 wolfSSL Inc. 25

3.15 Cypress PSoC-6 3 TARGETS

3.15.1 Building

The following configuration has been tested using PSoC 62S2 Wi-Fi BT Pioneer Kit (CY8CKIT-052S2-
43012).

3.15.1.1 Target specific requirements wolfBoot uses the following components to access periph-
erals on the PSoC:

• Cypress Core Library
• PSoC 6 Peripheral Driver Library
• CY8CKIT-062S2-43012 BSP

Cypress provides a customized OpenOCD for programming the flash and debugging.

3.15.2 Clock settings

wolfBoot configures PLL1 to run at 100 MHz and is driving CLK_FAST, CLK_PERI, and CLK_SLOW at
that frequency.

3.15.2.1 Build configuration The following configuration has been tested on the PSoC CY8CKIT-
62S2-43012:
make TARGET=psoc6 \

NVM_FLASH_WRITEONCE=1 \
CYPRESS_PDL=./lib/psoc6pdl \
CYPRESS_TARGET_LIB=./lib/TARGET_CY8CKIT-062S2-43012 \
CYPRESS_CORE_LIB=./lib/core-lib \
WOLFBOOT_SECTOR_SIZE=4096

Note: A reference .config can be found in /config/examples/cypsoc6.config.
Hardware acceleration is enable by default using psoc6 crypto hw support.
To compile with hardware acceleration disabled, use the option
PSOC6_CRYPTO=0
in your wolfBoot configuration.

3.15.2.2 OpenOCD installation Compile and install the customized OpenOCD.
Use the following configuration file when running openocd to connect to the PSoC6 board:
openocd.cfg for PSoC-62S2

source [find interface/kitprog3.cfg]
transport select swd
adapter speed 1000
source [find target/psoc6_2m.cfg]
init
reset init

3.15.3 Loading the firmware

To upload factory.bin to the device with OpenOCD, connect the device, run OpenOCD with the
configuration from the previous section, then connect to the local openOCD server running on TCP
port 4444 using telnet localhost 4444.

COPYRIGHT ©2021 wolfSSL Inc. 26

https://github.com/cypresssemiconductorco/core-lib
https://github.com/cypresssemiconductorco/psoc6pdl
https://github.com/cypresssemiconductorco/TARGET_CY8CKIT-062S2-43012
https://github.com/cypresssemiconductorco/Openocd

3.16 NXP iMX-RT 3 TARGETS

From the telnet console, type:
program factory.bin 0x10000000
When the transfer is finished, you can either close openOCD or start a debugging session.

3.15.4 Debugging

Debugging with OpenOCD:
Use the OpenOCD configuration from the previous sections to run OpenOCD.
From another console, connect using gdb, e.g.:
arm-none-eabi-gdb
(gdb) target remote:3333

To reset the board to start from the M0+ flash bootloader position (wolfBoot reset handler), use the
monitor command sequence below:
(gdb) mon init
(gdb) mon reset init
(gdb) mon psoc6 reset_halt

3.16 NXP iMX-RT
NXP RT1060/1062 and RT1050
The NXP iMX-RT1060 is a Cortex-M7 with a DCP coprocessor for SHA256 acceleration. Example config-
uration for this target is provided in /config/examples/imx-rt1060.config.

3.16.1 Building wolfBoot

MCUXpresso SDK is required by wolfBoot to access device drivers on this platform. A package can be
obtained from the MCUXpresso SDK Builder, by selecting a target and keeping the default choice of
components.

• For the RT1060 use EVKB-IMXRT1060. See configuration example in config/examples/imx-
rt1060.config.

• For the RT1050 use EVKB-IMXRT1050. See configuration example in config/examples/imx-
rt1050.config.

Set the wolfBoot MCUXPRESSO configuration variable to the path where the SDK package is extracted,
then build wolfBoot normally by running make.
wolfBoot support for iMX-RT1060/iMX-RT1050 has been tested using MCUXpresso SDK version 2.11.1.
DCP support (hardware acceleration for SHA256 operations) can be enabled by using PKA=1 in the
configuration file. Firmware can be directly uploaded to the target by copying factory.bin to the
virtual USB drive associated to the device.

3.17 NXP Kinetis
Supports K64 and K82 with crypto hardware acceleration.

COPYRIGHT ©2021 wolfSSL Inc. 27

https://mcuxpresso.nxp.com/en/welcome

3.18 NXP T2080 PPC 3 TARGETS

3.17.1 Buld options

See /config/examples/kinetis-k82f.config for example configuration.
The TARGET is kinetis. For LTC PKA support set PKA=.
SetMCUXPRESSO,MCUXPRESSO_CPU,MCUXPRESSO_DRIVERS andMCUXPRESSO_CMSIS forMCUXpresso
configuration.

3.17.2 Example partioning for K82

WOLFBOOT_PARTITION_SIZE?=0x7A000
WOLFBOOT_SECTOR_SIZE?=0x1000
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0xA000
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x84000
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0xff000

3.18 NXP T2080 PPC
The T2080 is a PPC e6500 based processor.
Example configuration for this target is provided in /config/examples/t2080.config.

3.18.1 Building wolfBoot

wolfBoot can be built with gcc powerpc tools. For example, apt install gcc-powerpc-linux-gnu.
Then make will use the correct tools to compile.

3.19 TI Hercules TMS570LC435
See /config/examples/ti-tms570lc435.config for example configuration.

3.20 Qemu x86-64 UEFI
x86-64bit machine with UEFI bios can run wolfBoot as EFI application.

3.20.1 Prerequisites:

• qemu-system-x86_64
• [GNU-EFI] (https://sourceforge.net/projects/gnu-efi/)
• Open Virtual Machine firmware bios images (OVMF) by Tianocore

On a debian-like system it is sufficient to install the packages as follows:
for wolfBoot and others
apt install git make gcc

for test scripts
apt install sudo dosfstools curl
apt install qemu qemu-system-x86 ovmf gnu-efi

for buildroot
apt install file bzip2 g++ wget cpio unzip rsync bc

COPYRIGHT ©2021 wolfSSL Inc. 28

https://tianocore.org

3.21 Nordic nRF52840 3 TARGETS

3.20.2 Configuration

An example configuration is provided in config/examples/x86_64_efi.config

3.20.3 Building and running on qemu

The bootloader and the initialization script startup.nsh for execution in the EFI environment are
stored in a loopback FAT partition.
The script tools/efi/prepare_uefi_partition.sh creates a new empty FAT loopback partitions
and adds startup.nsh.
A kernel with an embedded rootfs partition can be now created and added to the image, via the script
tools/efi/compile_efi_linux.sh. The script actually adds two instances of the target systems:
kernel.img and update.img, both signed for authentication, and tagged with version 1 and 2 re-
spectively.
Compiling with make will produce the bootloader image in wolfboot.efi.
The script tools/efi/run_efi.shwill add wolfboot.efi to the bootloader loopback partition, and
run the system on qemu. If both kernel images are present and valid, wolfBoot will choose the image
with the higher version number, so update.img will be staged as it’s tagged with version 2.
The sequence is summarized below:
cp config/examples/x86_64_efi.config .config
tools/efi/prepare_efi_partition.sh
make
tools/efi/compile_efi_linux.sh
tools/efi/run_efi.sh

EFI v2.70 (EDK II, 0x00010000)
[700/1832]
Mapping table

FS0: Alias(s):F0a:;BLK0:
PciRoot(0x0)/Pci(0x1,0x1)/Ata(0x0)

BLK1: Alias(s):
PciRoot(0x0)/Pci(0x1,0x1)/Ata(0x0)

Press ESC in 1 seconds to skip startup.nsh or any other key to continue.
Starting wolfBoot EFI...
Image base: 0xE3C6000
Opening file: kernel.img, size: 6658272
Opening file: update.img, size: 6658272
Active Part 1
Firmware Valid
Booting at 0D630000
Staging kernel at address D630100, size: 6658016

You can Ctrl-C or login as root and power off qemu with poweroff

3.21 Nordic nRF52840
We have full Nordic nRF5280 examples for Contiki and RIOT-OS in our wolfBoot-examples repo
Examples for nRF52: * RIOT-OS: https://github.com/wolfSSL/wolfBoot-examples/tree/master/riotOS-
nrf52840dk-ble * Contiki-OS: https://github.com/wolfSSL/wolfBoot-examples/tree/master/contiki-
nrf52
Example of flash memory layout and configuration on the nRF52:

COPYRIGHT ©2021 wolfSSL Inc. 29

https://github.com/wolfSSL/wolfboot-examples

3.22 Simulated 3 TARGETS

• 0x000000 - 0x01efff : Reserved for Nordic SoftDevice binary
• 0x01f000 - 0x02efff : Bootloader partition for wolfBoot
• 0x02f000 - 0x056fff : Active (boot) partition
• 0x057000 - 0x057fff : Unused
• 0x058000 - 0x07ffff : Upgrade partition

#define WOLFBOOT_SECTOR_SIZE 4096
#define WOLFBOOT_PARTITION_SIZE 0x28000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS 0x2f000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS 0x57000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x58000

3.22 Simulated
You can create a simulated target that uses files to mimic an internal and optionally an external flash.
The build will produce an executable ELF file wolfBoot.elf. You can provide another executable ELF
as firmware image and it will be executed. The command-line arguments of wolfBoot.elf are for-
warded to the application. The example application test-app\app_sim.c uses the arguments to
interact with libwolfboot.c and automatize functional testing. You can find an example configura-
tion in config/examples/sim.config.
An example of using the test-app/sim.c to test firmware update:
cp ./config/examples/sim.config .config
make

create the file internal_flash.dd with firmware v1 on the boot partition and
firmware v2 on the update partition
make test-sim-internal-flash-with-update
it should print 1
./wolfboot.elf success get_version
trigger an update
./wolfboot.elf update_trigger
it should print 2
./wolfboot.elf success get_version
it should print 2
./wolfboot.elf success get_version

COPYRIGHT ©2021 wolfSSL Inc. 30

4 HARDWARE ABSTRACTION LAYER

4 Hardware abstraction layer

In order to run wolfBoot on a target microcontroller, an implementation of the HAL must be provided.
The HAL’s purpose is to allowwrite/erase operations from the bootloader and the application initiating
the firmware upgrade through the application library, and ensuring that the MCU is running at full
speed during boot (to optimize the verification of the signatures).
The implementation of the hardware-specific calls for each platform are grouped in a single c file in
the hal directory.
The directory also contains a platform-specific linker script for each supported MCU, with the same
name and the .ld extension. This is used to link the bootloader’s firmware on the specific hardware,
exporting all the necessary symbols for flash and RAM boundaries.

4.1 Supported platforms
The following platforms are supported in the current version: - STM32F4, STM32L5, STM32L0,
STM32F7, STM32H7, STM32G0 - nRF52 - Atmel samR21 - TI cc26x2 - Kinetis - SiFive HiFive1 RISC-V

4.2 API
TheHardware Abstraction Layer (HAL) consists of six function calls be implemented for each supported
target:
void hal_init(void)
This function is called by the bootloader at the very beginning of the execution. Ideally, the implemen-
tation provided configures the clock settings for the target microcontroller, to ensure that it runs at at
the required speed to shorten the time required for the cryptography primitives to verify the firmware
images.
void hal_flash_unlock(void)
If the IAP interface of the flash memory of the target requires it, this function is called before every
write and erase operations to unlock write access to the flash. On some targets, this function may be
empty.
int hal_flash_write(uint32_t address, const uint8_t *data, int len)
This function provides an implementation of the flash write function, using the target’s IAP interface.
address is the offset from the beginning of the flash area, data is the payload to be stored in the
flash using the IAP interface, and len is the size of the payload. hal_flash_write should return 0
upon success, or a negative value in case of failure.
void hal_flash_lock(void)
If the IAP interface of the flash memory requires locking/unlocking, this function restores the flash
write protection by excluding write accesses. This function is called by the bootloader at the end of
every write and erase operations.
int hal_flash_erase(uint32_t address, int len)
Called by the bootloader to erase part of the flash memory to allow subsequent boots. Erase opera-
tions must be performed via the specific IAP interface of the target microcontroller. address marks
the start of the area that the bootloader wants to erase, and len specifies the size of the area to
be erased. This function must take into account the geometry of the flash sectors, and erase all the
sectors in between.
void hal_prepare_boot(void)

COPYRIGHT ©2021 wolfSSL Inc. 31

4.2 API 4 HARDWARE ABSTRACTION LAYER

This function is called by the bootloader at a very late stage, before chain-loading the firmware in the
next stage. This can be used to revert all the changes made to the clock settings, to ensure that the
state of the microcontroller is restored to its original settings.

4.2.1 Optional support for external flash memory

WolfBoot can be compiled with the makefile option EXT_FLASH=1. When the external flash support is
enabled, update and swap partitions can be associated to an externalmemory, andwill use alternative
HAL function for read/write/erase access. To associate the update or the swap partition to an external
memory, define PART_UPDATE_EXT and/or PART_SWAP_EXT, respectively.
The following functions are used to access the external memory, and must be defined when
EXT_FLASH is on:
int ext_flash_write(uintptr_t address, const uint8_t *data, int len)
This function provides an implementation of the flash write function, using the external memory’s
specific interface. address is the offset from the beginning of the addressable space in the device,
data is the payload to be stored, and len is the size of the payload. ext_flash_write should return
0 upon success, or a negative value in case of failure.
int ext_flash_read(uintptr_t address, uint8_t *data, int len)
This function provides an indirect read of the external memory, using the driver’s specific interface.
address is the offset from the beginning of the addressable space in the device, data is a pointer
where payload is stored upon a successful call, and len is the maximum size allowed for the payload.
ext_flash_read should return 0 upon success, or a negative value in case of failure.
int ext_flash_erase(uintptr_t address, int len)
Called by the bootloader to erase part of the external memory. Erase operations must be performed
via the specific interface of the target driver (e.g. SPI flash). addressmarks the start of the area relative
to the device, that the bootloader wants to erase, and len specifies the size of the area to be erased.
This function must take into account the geometry of the sectors, and erase all the sectors in between.
void ext_flash_lock(void)
If the interface of the external flash memory requires locking/unlocking, this function may be used to
restore the flash write protection or exclude write accesses. This function is called by the bootloader
at the end of every write and erase operations on the external device.
void ext_flash_unlock(void)
If the IAP interface of the external memory requires it, this function is called before every write and
erase operations to unlock write access to the device. On some drivers, this function may be empty.

COPYRIGHT ©2021 wolfSSL Inc. 32

5 FLASH PARTITIONS

5 Flash partitions

5.1 Flash memory partitions
To integrate wolfBoot you need to partition the flash into separate areas (partitions), taking into ac-
count the geometry of the flash memory.
Images boundaries must be aligned to physical sectors, because the bootloader erases all the flash
sectors before storing a new firmware image, and swaps the content of the two partitions, one sector
at a time.
For this reason, before proceeding with partitioning on a target system, the following aspects must
be considered:

• BOOTpartition andUPDATEpartitionmust have the same size, andbe able to contain the running
system

• SWAP partition must be as big as the largest sector in both BOOT and UPDATE partition.
The flash memory of the target is partitioned into the following areas:

• Bootloader partition, at the beginning of the flash, generally very small (16-32KB)
• Primary slot (BOOT partition) starting at address WOLFBOOT_PARTITION_BOOT_ADDRESS
• Secondary slot (UPDATE partition) starting at address WOLFBOOT_PARTITION_UPDATE_ADDRESS

– both partitions share the same size, defined as WOLFBOOT_PARTITION_SIZE
• Swapping space (SWAP partition) starting at address WOLFBOOT_PARTITION_SWAP_ADDRESS

– the swap space size is defined as WOLFBOOT_SECTOR_SIZE andmust be as big as the largest
sector used in either BOOT/UPDATE partitions.

A proper partitioning configurationmust be set up for the specific use, by setting the values for offsets
and sizes in include/target.h.

5.1.1 Bootloader partition

This partition is usually very small, and only contains the bootloader code and data. Public keys pre-
authorized during factory image creations are automatically stored as part of the firmware image.

5.1.2 BOOT partition

This is the only partition from where it is possible to chain-load and execute a firmware image. The
firmware imagemust be linked so that its entry-point is at addressWOLFBOOT_PARTITION_BOOT_ADDRESS
+ 256.

5.1.3 UPDATE partition

The running firmware is responsible for transferring a new firmware image through a secure channel,
and store it in the secondary slot. If an update is initiated, the bootloader will replace or swap the
firmware in the boot partition at the next reboot.

5.2 Partition status and sector flags
Partitions are used to store firmware images currently in use (BOOT) or ready to swap in (UPDATE).
In order to track the status of the firmware in each partition, a 1-Byte state field is stored at the end
of each partition space. This byte is initialized when the partition is erased and accessed for the first
time.

COPYRIGHT ©2021 wolfSSL Inc. 33

5.3 Overview of the content of the FLASH partitions 5 FLASH PARTITIONS

Possible states are: - STATE_NEW (0xFF): The image was never staged for boot, or triggered for an
update. If an image is present, no flags are active. - STATE_UPDATING (0x70): Only valid in the UP-
DATE partition. The image is marked for update and should replace the current image in BOOT. -
STATE_TESTING (0x10): Only valid in the BOOT partition. The image has been just updated, and never
completed its boot. If present after reboot, it means that the updated image failed to boot, despite
being correctly verified. This particular situation triggers a rollback. - STATE_SUCCESS (0x00): Only
valid in the BOOT partition. The image stored in BOOT has been successfully staged at least once, and
the update is now complete.
Starting from the State byte and growing backwards, the bootloader keeps track of the state of each
sector, using 4 bits per sector at the end of the UPDATE partition. Whenever an update is initiated,
the firmware is transferred from UPDATE to BOOT one sector at a time, and storing a backup of the
original firmware from BOOT to UPDATE. Each flash access operation correspond to a different value
of the flags for the sector in the sector flags area, so that if the operation is interrupted, it can be
resumed upon reboot.

5.3 Overview of the content of the FLASH partitions

Figure 2: wolfBoot partition

COPYRIGHT ©2021 wolfSSL Inc. 34

6 WOLFBOOT FEATURES

6 wolfBoot Features

6.1 Signing
6.1.1 wolfBoot key tools installation

Instructions for setting up Python, wolfCrypt-py module and wolfBoot for firmware signing and key
generation.
Note: There is a pure C version of the key tool available as well. See C Key Tools below.

6.1.2 Install Python3

1. Download latest Python 3.x and run installer: https://www.python.org/downloads
2. Check the box that says Add Python 3.x to PATH

6.1.3 Install wolfCrypt

git clone https://github.com/wolfSSL/wolfssl.git
cd wolfssl
./configure --enable-keygen --enable-rsa --enable-ecc --enable-ed25519 --

enable-ed448 --enable-des3 CFLAGS="-DWOLFSSL_PUBLIC_MP"
make
sudo make install

6.1.4 Install wolfcrypt-py

git clone https://github.com/wolfSSL/wolfcrypt-py.git
cd wolfcrypt-py
sudo USE_LOCAL_WOLFSSL=/usr/local pip3 install .

6.1.5 Install wolfBoot

git clone https://github.com/wolfSSL/wolfBoot.git
cd wolfBoot
git submodule update --init
Setup configuration (or copy template from ./config/examples)
make config
Build the wolfBoot binary and sign an example test application
make

6.1.6 C Key Tools

A standalone C version of the keygen tools is available in: ./tools/keytools.
These can be built in tools/keytools using make or from the wolfBoot root using make keytools.
If the C version of the key tools exists they will be used by wolfBoot (the default is the Python scripts).

6.1.6.1 Windows Visual Studio Use the wolfBootSignTool.vcxproj Visual Studio project to
build the sign.exe and keygen.exe tools for use on Windows.

6.1.7 Command Line Usage

6.1.7.1 Keygen tool Usage: keygen[.py] [OPTIONS] [-g new-keypair.der] [-i existing-
pubkey.der] [...]

COPYRIGHT ©2021 wolfSSL Inc. 35

6.1 Signing 6 WOLFBOOT FEATURES

keygen is used to populate a keystore with existing and new public keys. Two options are supported:
• -g privkey.der to generate a new keypair, add the public key to the keystore and save the
private key in a new file privkey.der

• -i existing.der to import an existing public key from existing.der
Arguments are not exclusive, and can be repeatedmore than once to populate a keystorewithmultiple
keys.
One option must be specified to select the algorithm enabled in the keystore (e.g. --ed25519 or --
rsa3072. See the section “Public key signature options” for the sign tool for the available options.
The files generate by the keygen tool is the following:

• A C file src/keystore.c, which is normally linked with the wolfBoot image, when the keys are
provisioned through generated C code.

• A binary file keystore.img that can be used to provision the public keys through an alternative
storage

• The private key, for each -g option provided from command line

6.1.7.2 Sign tool sign and sign.py produce a signed firmware image by creating a manifest
header in the format supported by wolfBoot.
Usage: sign[.py] [OPTIONS] IMAGE.BIN KEY.DER VERSION
IMAGE.BIN: A file containing the binary firmware/software to sign KEY.DER: Private key file, in DER
format, to sign the binary image VERSION: The version associated with this signed software OPTIONS:
Zero or more options, described below

6.1.7.3 Public key signature options If none of the following arguments is given, the tool will try
to guess the key size from the format and key length detected in KEY.DER.

• --ed25519 Use ED25519 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --ed448Use ED448 for signing the firmware. Assume that the given KEY.DER file is in this format.
• --ecc256 Use ecc256 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --ecc384 Use ecc384 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa2048 Use rsa2048 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa3072 Use rsa3072 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --rsa4096 Use rsa4096 for signing the firmware. Assume that the given KEY.DER file is in this
format.

• --no-sign Disable secure boot signature verification. No signature verification is performed in
the bootloader, and the KEY.DER argument is ignored.

6.1.8 Key generation and management

KeyStore is the name of the mechanism used by wolfBoot to store all the public keys used for authen-
ticating the signature of current firmware and updates.

COPYRIGHT ©2021 wolfSSL Inc. 36

6.1 Signing 6 WOLFBOOT FEATURES

wolfBoot’s key generation tool can be used to generate one or more keys. By default, when running
make for the first time, a single key wolfboot_signing_private_key.der is created, and added to
the keystore module. This key should be used to sign any firmware running on the target, as well as
firmware update binaries.
Additionally, the keygen tool creates additional files with different representations of the keystore -
A .c file (src/keystore.c) which can be used to deploy public keys as part of the bootloader itself, by
linking the keystore in wolfboot.elf - A .bin file (keystore.bin) which contains the keystore that can
be hosted on a custom memory support. In order to access the keystore, a small driver is required
(see section “Interface API” below).
By default, the keystore object in src/keystore.c is accessed by wolfboot by including its symbols
in the build. Once generated, this file contains an array of structures describing each public key that
will be available to wolfBoot on the target system. Additionally, there are a few functions that connect
to the wolfBoot keystore API to access the details and the content of the public key slots.
The public key is described by the following structure:
struct keystore_slot {

uint32_t slot_id;
uint32_t key_type;
uint32_t part_id_mask;
uint32_t pubkey_size;
uint8_t pubkey[KEYSTORE_PUBKEY_SIZE];

};

• slot_id is the incremental identifier for the key slot, starting from 0.
• key_type describes the algorithm of the key, e.g. AUTH_KEY_ECC256 or AUTH_KEY_RSA3072
• mask describes the permissions for the key. It’s a bitmap of the partition ids for which this key
can be used for verification

• pubkey_size the size of the public key buffer
• pubkey the actual buffer containing the public key in its raw format

When booting, wolfBoot will automatically select the public key associated to the signed firmware
image, check that it matches the permissionmask for the partition id where the verification is running
and then attempts to authenticate the signature of the image using the selected public key slot.

6.1.8.1 Creating multiple keys keygen accepts multiple filenames for private keys.
Two arguments:

• -g priv.der generate new keypair, store the private key in priv.der, add the public key to the
keystore

• -i pub.der import an existing public key and add it to the keystore
Example of creation of a keystore with two ED25519 keys:
./tools/keytools/keygen.py --ed25519 -g first.der -g second.der
will create the following files:

• first.der first private key
• second.der second private key
• src/keystore.c C keystore containing both public keys associated with first.der and sec-
ond.der.

The keystore.c generated should look similar to this:

COPYRIGHT ©2021 wolfSSL Inc. 37

6.1 Signing 6 WOLFBOOT FEATURES

#define NUM_PUBKEYS 2
const struct keystore_slot PubKeys[NUM_PUBKEYS] = {

/* Key associated to private key 'first.der' */
{

.slot_id = 0,

.key_type = AUTH_KEY_ED25519,

.part_id_mask = KEY_VERIFY_ALL,

.pubkey_size = KEYSTORE_PUBKEY_SIZE_ED25519,

.pubkey = {
0x21, 0x7B, 0x8E, 0x64, 0x4A, 0xB7, 0xF2, 0x2F,
0x22, 0x5E, 0x9A, 0xC9, 0x86, 0xDF, 0x42, 0x14,
0xA0, 0x40, 0x2C, 0x52, 0x32, 0x2C, 0xF8, 0x9C,
0x6E, 0xB8, 0xC8, 0x74, 0xFA, 0xA5, 0x24, 0x84

},
},

/* Key associated to private key 'second.der' */
{

.slot_id = 1,

.key_type = AUTH_KEY_ED25519,

.part_id_mask = KEY_VERIFY_ALL,

.pubkey_size = KEYSTORE_PUBKEY_SIZE_ED25519,

.pubkey = {
0x41, 0xC8, 0xB6, 0x6C, 0xB5, 0x4C, 0x8E, 0xA4,
0xA7, 0x15, 0x40, 0x99, 0x8E, 0x6F, 0xD9, 0xCF,
0x00, 0xD0, 0x86, 0xB0, 0x0F, 0xF4, 0xA8, 0xAB,
0xA3, 0x35, 0x40, 0x26, 0xAB, 0xA0, 0x2A, 0xD5

},
},

};

6.1.8.2 Public keys and permissions By default, when a new keystore is created, the permissions
mask is set to KEY_VERIFY_ALL, which means that the key can be used to verify a firmware targeting
any partition id.
To restrict the permissions for single keys, it would be sufficient to change the value of their
part_id_mask attributes.
The part_id_mask value is a bitmask, where each bit represent a different partition. The bit ‘0’ is
reserved for wolfBoot self-update, while typically the main firmware partition is associated to id 1, so
it requires a key with the bit ‘1’ set. In other words, signing a partition with --id 3 would require
turning on bit ‘3’ in the mask, i.e. adding (1U « 3) to it.
Beside KEY_VERIFY_ALL, pre-defined mask values can also be used here:

• KEY_VERIFY_APP_ONLY only verifies the main application, with partition id 1
• KEY_VERIFY_SELF_ONLY this key can only be used to authenticate wolfBoot self-updates (id =
0)

• KEY_VERIFY_ONLY_ID(N) macro that can be used to restrict the usage of the key to a specific
partition id N

COPYRIGHT ©2021 wolfSSL Inc. 38

6.2 Measured Boot using wolfBoot 6 WOLFBOOT FEATURES

6.1.9 Signing Firmware

1. Load the private key to use for signing into ./wolfboot_signing_private_key.der
2. Run the signing tool with asymmetric algorithm, hash algorithm, file to sign, key and version.

./tools/keytools/sign --rsa2048 --sha256 test-app/image.bin
wolfboot_signing_private_key.der 1↪

OR
python3 ./tools/keytools/sign.py --rsa2048 --sha256 test-app/image.bin

wolfboot_signing_private_key.der 1↪

Note: The last argument is the “version” number.

6.1.10 Signing Firmware with External Private Key (HSM)

Steps for manually signing firmware using an external key source.
Create file with Public Key
openssl rsa -inform DER -outform DER -in my_key.der -out rsa2048_pub.der

-pubout↪

Add the public key to the wolfBoot keystore using `keygen -i`
./tools/keytools/keygen --rsa2048 -i rsa2048_pub.der
OR
python3 ./tools/keytools/keygen.py --rsa2048 -i rsa4096_pub.der

Generate Hash to Sign
./tools/keytools/sign --rsa2048 --sha-only --sha256

test-app/image.bin rsa2048_pub.der 1↪
OR
python3 ./tools/keytools/sign.py --rsa2048 --sha-only --sha256

test-app/image.bin rsa4096_pub.der 1↪

Sign hash Example (here is where you would use an HSM)
openssl pkeyutl -sign -keyform der -inkey my_key.der -in

test-app/image_v1_digest.bin > test-app/image_v1.sig↪

Generate final signed binary
./tools/keytools/sign --rsa2048 --sha256 --manual-sign

test-app/image.bin rsa2048_pub.der 1 test-app/image_v1.sig↪
OR
python3 ./tools/keytools/sign.py --rsa2048 --sha256 --manual-sign

test-app/image.bin rsa4096_pub.der 1 test-app/image_v1.sig↪

Combine into factory image (0xc0000 is the WOLFBOOT_PARTITION_BOOT_ADDRESS)
tools/bin-assemble/bin-assemble factory.bin 0x0 wolfboot.bin \

0xc0000 test-app/image_v1_signed.bin

6.2 Measured Boot using wolfBoot
wolfBoot offers a simplifiedmeasured boot implementation, a way to record and track the state of the
system boot process using a Trusted Platform Module(TPM).
This record is tamper-proofed by special registers in the TPM called Platform Configuration Register.
Then, the firmware application, RTOS or rich OS(Linux), can access that log of information by reading
the PCRs of the TPM.

COPYRIGHT ©2021 wolfSSL Inc. 39

6.2 Measured Boot using wolfBoot 6 WOLFBOOT FEATURES

wolfBoot can interact with TPM2.0 chips thanks to its integration with wolfTPM. wolfTPM has native
support for Microsoft Windows and Linux, and can be used standalone or together with wolfBoot.
The combination of wolfBoot with wolfTPM gives the developer a tamper-proof secure storage for
protecting the system during and after boot.

6.2.1 Concept

Typically, systems use Secure Boot to guarantee that the correct and geniune firmware is booted by
verifying its signature. Afterwards, this knowledge is unknown to the sytem. The application does
not know if the system started in a good known state. Sometimes, this guarantee is needed by the
firmware itself. To provide such mechanism the concept of Measured Boot exist.
Measured Boot can be used to check every start-up component, including settings and user infor-
mation(user partition). The result of the checks is then stored into special registers called PCR. This
process is called PCR Extend and is refered to as a TPMmeasurement. PCR registers can be reset only
on TPM power-on.
Having TPMmeasurements provide a way for the firmware or Operating System(OS), like Windows or
Linux, to know that the software loaded before it gained control over system, is trustworthy and not
modified.
In wolfBoot the concept is simplified to measuring a single component, the main firmware image.
However, this can easily be extended by using more PCR registers.

6.2.2 Configuration

To enable measured boot add MEASURED_BOOT=1 setting in your wolfBoot config.
It is also necessary to select the PCR (index) where the measurement will be stored.
Selection is made using the MEASURED_BOOT_PCR_A=[index] setting. Add this setting in your wolf-
Boot config and replace [index] with a number between 0 and 23. Below you will find guidelines for
selecting a PCR index.
Any TPM has a minimum of 24 PCR registers. Their typical use is as follows:

Index Typical use Recommended to use with
0 Core Root of Trust and/or BIOS measurement bare-metal, RTOS
1 measurement of Platform Configuration Data bare-metal, RTOS
2-3 Option ROM Code measurement bare-metal, RTOS
4-5 Master Boot Record measurement bare-metal, RTOS
6 State Transitions bare-metal, RTOS
7 Vendor specific bare-metal, RTOS
8-9 Partition measurements bera-metal, RTOS
10 measurement of the Boot Manager bare-metal, RTOS
11 Typically used by Microsoft Bitlocker bare-metal, RTOS
12-15 Available for any use bare-metal, RTOS, Linux, Windows
16 DEBUG Use only for test purposes
17 DRTM Trusted Bootloader
18-22 Trusted OS Trusted Execution Environment(TEE)
23 Application Use only for temporary measurements

Recommendations for choosing a PCR index:
• During development it is recommended to use PCR16 that is intented for testing.

COPYRIGHT ©2021 wolfSSL Inc. 40

6.3 Firmware image 6 WOLFBOOT FEATURES

• In production, if you are running a bare-metal firmware or RTOS, you could use almost all
PCRs(PCR0-15), except the one for DRTM and Trusted OS(PCR17-23).

• If you are running Linux or Windows, PCR12-15 can be chosen for production ready firmware, in
order to avoid conflict with other software that might be using PCRs from within Linux, like the
Linux IMA or Microsoft Bitlocker.

Here is an example part of a wolfBoot .config during development:
MEASURED_BOOT?=1
MEASURED_PCR_A?=16

6.2.2.1 Code wolfBoot offers out-of-the-box solution. There is zero need of the developer to touch
wolfBoot code in order to use measured boot. If you would want to check the code, then look in sr-
c/image.c and more specifically the measure_boot() function. There you would find several TPM2
native API calls to wolfTPM. For more information about wolfTPM you can check its GitHub repository.

6.3 Firmware image
6.3.1 Firmware entry point

WolfBoot can only chain-load and execute firmware images from a specific entry point in memory,
which must be specified as the origin of the FLASHmemory in the linker script of the embedded appli-
cation. This corresponds to the first partition in the flash memory.
Multiple firmware images can be created this way, and stored in two different partitions. The boot-
loader will take care of moving the selected firmware to the first (BOOT) partition before chain-loading
the image.
Due to the presence of an image header, the entry point of the application has a fixed additional offset
of 256B from the beginning of the flash partition.

6.3.2 Firmware image header

Each (signed) firmware image is pre-pended with a fixed-size image header, containing useful infor-
mation about the firmware. The image header is padded to fit in 256B, in order to guarantee that
the entry point of the actual firmware is stored on the flash starting from a 256-Bytes aligned address.
This ensures that the bootloader can relocate the vector table before chain-loading the firmware the
interrupt continue to work properly after the boot is complete.

Figure 3: Image header

The image header is stored at the beginning of the slot and the actual firmware image starts 256 Bytes after
it

COPYRIGHT ©2021 wolfSSL Inc. 41

6.4 Firmware update 6 WOLFBOOT FEATURES

6.3.2.1 Image header: Tags The image header is prepended with a single 4-byte magic number,
followed by a 4-byte field indicating the firmware image (excluding the header). All numbers in the
header are stored in Little-endian format.
The two fixed fields are followed by one or more tags. Each TAG is structured as follows:

• 2 bytes indicating the Type
• 2 bytes indicating the size of the tag, excluding the type and size bytes
• N bytes of tag content

With the following exception: - A ‘0xFF’ in the Type field indicate a simple padding byte. The ‘padding’
byte has no size field, and the next byte should be processed as Type again. Each Type has a different
meaning, and integrate information about the firmware. The following Tags aremandatory for validat-
ing the firmware image: - A ‘version’ Tag (type: 0x0001, size: 4 Bytes) indicating the version number
for the firmware stored in the image - A ‘timestamp’ Tag (type: 0x0002, size 8 Bytes) indicating the
timestamp in unix seconds for the creation of the firmware - A ‘sha256 digest’ Tag (type: 0x0003, size:
32 Bytes) used for integrity check of the firmware - A ‘firmware signature’ Tag (type: 0x0020, size: 64
Bytes) used to validate the signature stored with the firmware against a known public key - A ‘firmware
type’ Tag (type: 0x0030, size: 2 Bytes) used to identify the type of firmware, and the authentication
mechanism in use.
Optionally, a ‘public key hint digest’ Tag can be transmitted in the header (type: 0x10, size:32 Bytes).
This Tag contains the SHA256 digest of the public key used by the signing tool. The bootloader may
use this field to locate the correct public key in case of multiple keys available.
wolfBoot will, in all cases, refuse to boot an image that cannot be verified and authenticated using the
built-in digital signature authentication mechanism.

6.3.2.2 Image signing tool The image signing tool generates the header with all the required Tags
for the compiled image, and add them to the output file that can be then stored on the primary slot
on the device, or transmitted later to the device through a secure channel to initiate an update.

6.3.2.3 Storing firmware image Firmware images are stored with their full header at the begin-
ning of any of the partitions on the system. wolfBoot can only boot images from the BOOT partition,
while keeping a second firmware image in the UPDATE partition.
In order to boot a different image, wolfBoot will have to swap the content of the two images.
For more information on how firmware images are stored andmanaged within the two partitions, see
Flash partitions

6.4 Firmware update
This section documents the complete firmware update procedure, enabling secure boot for an existing
embedded application.

6.4.1 Updating Microcontroller FLASH

The steps to complete a firmware update with wolfBoot are: - Compile the firmware with the correct
entry point - Sign the firmware - Transfer the image using a secure connection, and store it to the
secondary firmware slot - Trigger the image swap - Reboot to let the bootloader begin the image
swap
At any given time, an application or OS running on a wolfBoot system can receive an updated version
of itself, and store the updated image in the second partition in the FLASH memory.

COPYRIGHT ©2021 wolfSSL Inc. 42

6.4 Firmware update 6 WOLFBOOT FEATURES

Figure 4: Update and Rollback

Applications or OS threads can be linked to the libwolfboot library, which exports the API to trigger
the update at the next reboot, and some helper functions to access the flash partition for erase/write
through the target specific HAL.

6.4.2 Update procedure description

Using the API provided to the application, wolfBoot offers the possibility to initiate, confirm or rollback
an update.
After storing the new firmware image in the UPDATE partition, the application should initiate the up-
date by calling wolfBoot_update_trigger(). By doing so, the UPDATE partition is marked for up-
date. Upon the next reboot, wolfBoot will: - Validate the new firmware image stored in the UPDATE
partition - Verify the signature attached against a known public key stored in the bootloader image -
Swap the content of the BOOT and the UPDATE partitions - Mark the new firmware in the BOOT parti-
tion as in state STATE_TESTING - Boot into the newly received firmware
If the system is interrupted during the swap operation and reboots, wolfBoot will pick up where it left
off and continue the update procedure.

6.4.2.1 Successful boot Upon a successful boot, the application should inform the bootloader by
calling wolfBoot_success(), after verifying that the system is up and running again. This operation
confirms the update to a new firmware.
Failing to set the BOOT partition to STATE_SUCCESS before the next reboot triggers a roll-back oper-
ation. Roll-back is initiated by the bootloader by triggering a new update, this time starting from the
backup copy of the original (pre-update) firmware, which is now stored in the UPDATE partition due to
the swap occurring earlier.

6.4.2.2 Building a new firmware image Firmware images are position-dependent, and can only
boot from the origin of the BOOT partition in FLASH. This design constraint implies that the chosen

COPYRIGHT ©2021 wolfSSL Inc. 43

6.4 Firmware update 6 WOLFBOOT FEATURES

firmware is always stored in the BOOT partition, and wolfBoot is responsible for pre-validating an
update image and copy it to the correct address.
All the firmware images must therefore have their entry point set to the address corresponding to the
beginning of the BOOT partition, plus an offset of 256 Bytes to account for the image header.
Once the firmware is compiled and linked, it must be signed using the sign tool. The tool produces
a signed image that can be transferred to the target using a secure connection, using the same key
corresponding to the public key currently used for verification.
The tool also adds all the required Tags to the image header, containing the signatures and the SHA256
hash of the firmware.

6.4.2.3 Self-update wolfBoot can update itself if RAM_CODE is set. This procedure operates almost
the same as firmware update with a few key differences. The header of the update is marked as a
bootloader update (use --wolfboot-update for the sign tools).
The new signed wolfBoot image is loaded into the UPDATE parition and triggered the same as a
firmware update. Instead of performing a swap, after the image is validated and signature verified,
the bootloader is erased and the new image is written to flash. This operation is not safe from inter-
ruption. Interruption will prevent the device from rebooting.
wolfBoot can be used to deploy new bootloader versions as well as update keys.

6.4.2.4 Incremental updates (aka: ‘delta’ updates) wolfBoot supports incremental updates,
based on a specific older version. The sign tool can create a small “patch” that only contains the binary
difference between the version currently running on the target and the update package. This reduces
the size of the image to be transferred to the target, while keeping the same level of security through
public key verification, and integrity due to the repeated check (on the patch and the resulting image).
The format of the patch is based on themechanism suggested by Bentley/McIlroy, which is particularly
effective to generate small binary patches. This is useful to minimize time and resources needed to
transfer, authenticate and install updates.

6.4.2.4.1 How it works As an alternative to transferring the entire firmware image, the key tools
create a binary diff between a base version previously uploaded and the new updated image.
The resulting bundle (delta update) contains the information to derive the content of version ‘2’ of
the firmware, starting from the base version, that is currently running on the target (version ‘1’ in this
example), and the reverse patch to downgrade version ‘2’ back to version ‘1’ if something goes wrong
running the new version.
On the device side, wolfboot will recognize and verify the authenticity of the delta update before ap-
plying the patch to the current firmware. The new firmware is rebuilt in place, replacing the content
of the BOOT partition according to the indication in the (authenticated) ‘delta update’ bundle.

6.4.2.4.2 Two-steps verification Binary patches are created by comparing signed firmware images.
wolfBoot verifies that the patch is applied correctly by checking for the integrity and the authenticity
of the resulting image after the patch.
The delta update bundle itself, containing the patches, is prefixed with a manifest header describing
the details for the patch, and signed like a normal full update bundle.
This means that wolfBoot will apply two levels of authentication: the first one when the delta bundle
is processed (e.g. when an update is triggered), and the second one every time a patch is applied, or
reversed, to validate the firmware image before booting.

COPYRIGHT ©2021 wolfSSL Inc. 44

6.4 Firmware update 6 WOLFBOOT FEATURES

Figure 5: Delta update

COPYRIGHT ©2021 wolfSSL Inc. 45

6.5 Remote External flash memory support via UART 6 WOLFBOOT FEATURES

These steps are performed automatically by the key tools when using the --delta option, as de-
scribed in the example.

6.4.2.4.3 Confirming the update From the application perspective, nothing changes from the nor-
mal, ‘full’ update case. Application must still call wolfBoot_success() on the first boot with the
updated version to ensure that the update is confirmed.
Failing to confirm the success of the update will cause wolfBoot to revert the patch applied during
the update. The ‘delta update’ bundle also contains a reverse patch, which can revert the update and
restore the base version of the firmware.
The diagram below shows the authentication steps and the diff/patch process in both directions (up-
date and roll-back for missed confirmation).

6.4.2.4.4 Incremental update: example Requirement: wolfBoot is compiledwithDELTA_UPDATES=1
Version “1” is signed as usual, as a standalone image:
tools/keytools/sign.py --ecc256 --sha256 test-app/image.bin wolfboot_signing_private_key.der
1
When updating from version 1 to version 2, you can invoke the sign tool as:
tools/keytools/sign.py --delta test-app/image_v1_signed.bin --ecc256 --sha256
test-app/image.bin wolfboot_signing_private_key.der 2
Besides the usual output file image_v2_signed.bin, the sign tool creates an additional im-
age_v2_signed_diff.bin which should be noticeably smaller in size as long as the two binary files
contain overlapping areas.
This is the delta update bundle, a signed package containing the patches for updating version 1 to
version 2, and to roll back to version 1 if needed, after the first patch has been applied.
The delta bundle image_v2_signed_diff.bin can be now transferred to the update partition on the
target like a full update image.
At next reboot, wolfBoot recognizes the incremental update, checks the integrity, the authenticity and
the versions of the patch. If all checks succeed, the new version is installed by applying the patch on
the current firmware image.
If the update is not confirmed, at the next reboot wolfBoot will restore the original base im-
age_v1_signed.bin, using the reverse patch contained in the delta update bundle.

6.5 Remote External flash memory support via UART
wolfBoot can emulate external partitions using UART communication with a neighbor system. This
feature is particularly useful in those asynchronous multi-process architectures, where updates can
be stored with the assistance of an external processing unit.

6.5.1 Bootloader setup

The option to activate this feature is UART_FLASH=1. This configuration option depends on the exter-
nal flash API, which means that the option EXT_FLASH=1 is also mandatory to compile the bootloader.
The HAL of the target system must be expanded to include a simple UART driver, that will be used by
the bootloader to access the content of the remote flash using one of the UART controllers on board.
Example UART drivers for a few of the supported platforms can be found in the hal/uart directory.

COPYRIGHT ©2021 wolfSSL Inc. 46

6.5 Remote External flash memory support via UART 6 WOLFBOOT FEATURES

Figure 6: Delta update: details
COPYRIGHT ©2021 wolfSSL Inc. 47

6.6 Encrypted external partitions 6 WOLFBOOT FEATURES

The API exposed by the UART HAL extension for the supported targets is composed by the following
functions:
int uart_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop);
int uart_tx(const uint8_t c);
int uart_rx(uint8_t *c);

Consider implementing these three functions based on the provided examples if you want to use
external flash memory support on your platform, if not officially supported yet.

6.5.2 Host side: UART flash server

On the remote system hosting the external partition image for the target, a simple protocol can be
implemented on top of UART messages to serve flash-access specific calls.
An example uart-flash-server daemon, designed to run on a GNU/Linux host and emulate the external
partition with a local file on the filesystem, is available in tools/uart-flash-server.

6.5.3 External flash update mechanism

wolfBoot treats external UPDATE and SWAP partitions in the same way as when they are mapped on a
local SPI flash. Read and write operations are simply translated into remote procedure calls via UART,
that can be interpreted by the remote application and provide read and write access to actual storage
elements which would only be accessible by the host.
This means that after a successful update, a copy of the previous firmware will be stored in the remote
partition to provide exactly the same update mechanism that is available in all the other use cases.
The only difference consist in the way of accessing the physical storage area, but all the mechanisms
at a higher level stay the same.

6.6 Encrypted external partitions
wolfBoot offers the possibility to encrypt the content of the entire UPDATE partition, by using a pre-
shared symmetric key which can be temporarily stored in a safer non-volatile memory area.
SWAP partition is also temporarily encrypted using the same key, so a dump of the external flash won’t
reveal any content of the firmware update packages.

6.6.1 Rationale

Encryption of external partition works at the level of the external flash interface.
All write calls to external partitions from the bootloader perform an additional encryption step to hide
the actual content of the external non-volatile memory.
Viceversa, all read operations will decrypt the data stored when the feature is enabled.
An extra option is provided to the sign.py sign tool to encrypt the firmware update after signing it,
so that it can be stored as is in the external memory by the application, and will be decrypted by the
bootloader in order to verify the update and begin the installation.

6.6.2 Temporary key storage

By default, wolfBoot will store the pre-shared symmetric key used for encryption in a temporary area
on the internal flash. This allows read-out protections to be used to hide the temporary key.
Alternatively, more secure mechanisms are available to store the temporary key in a different key
storage (e.g. using a hardware security module or a TPM device).

COPYRIGHT ©2021 wolfSSL Inc. 48

tools/uart-flash-server

6.6 Encrypted external partitions 6 WOLFBOOT FEATURES

The temporary key can be set at run time by the application, and will be used exactly once by the
bootloader to verify and install the next update. The key can be for example received from a back-end
during the update process using secure communication, and set by the application, using libwolf-
boot API, to be used by wolfBoot upon next boot.
Aside from setting the temporary key, the update mechanism remains the same for distributing, up-
loading and installing firmware updates through wolfBoot.

6.6.3 Libwolfboot API

The API to communicate with the bootloader from the application is expanded when this feature is
enabled, to allow setting a temporary key to process the next update.
The functions
int wolfBoot_set_encrypt_key(const uint8_t *key, const uint8_t *nonce);
int wolfBoot_erase_encrypt_key(void);

can be used to set a temporary encryption key for the external partition, or erase a key previously set,
respectively.
Moreover, using libwolfboot to access the external flash with wolfboot hal from the application will
not use encryption. This way the received update, already encrypted at origin, can be stored in the
external memory unchanged, and retrieved in its encrypted format, e.g. to verify that the transfer has
been successful before reboot.

6.6.4 Symmetric encryption algorithms

Encryption can be enabled in wolfBoot using ENCRYPT=1.
The default algorithm used to encrypt and decrypt data in external partitions is Chacha20-256. AES-
128 and AES-256 options are also available and can be selected using ENCRYPT_WITH_AES128=1 or
ENCRYPT_WITH_AES256=1

6.6.5 Chacha20-256

When ChaCha20 is selected:
• The key provided to wolfBoot_set_encrypt_key()must be exactly 32 Bytes long.
• The nonce argument must be a 96-bit (12 Bytes) randomly generated buffer, to be used as IV for
encryption and decryption.

6.6.5.1 Example usagewith ChaCha20-256 The sign.py tool can sign and encrypt the imagewith
a single command. The encryption secret is provided in a binary file that should contain a concatena-
tion of a 32B ChaCha-256 key and a 12B nonce.
In the examples provided, the test application uses the following parameters:
key = "0123456789abcdef0123456789abcdef"
nonce = "0123456789ab"

So it is easy to prepare the encryption secret in the test scripts or from the command line using:
echo -n "0123456789abcdef0123456789abcdef0123456789ab" > enc_key.der

The sign.py script can now be invoked to produce a signed+encrypted image, by using the extra
argument --encrypt followed by the secret file:

COPYRIGHT ©2021 wolfSSL Inc. 49

6.7 Application interface for interactions with the bootloader 6 WOLFBOOT FEATURES

./tools/keytools/sign.py --encrypt enc_key.der test-app/image.bin
wolfboot_signing_private_key.der 24

which will produce as output the file test-app/image_v24_signed_and_encrypted.bin, that can
be transferred to the target’s external device.

6.6.6 AES-CTR

AES is used in CTRmode. WhenAES is selected: - Thekeyprovided towolfBoot_set_encrypt_key()
must be 16 Bytes (AES128) or 32 Bytes (AES256) long. - The nonce argument is a 128-bit (16 Byyes)
randomly generated buffer, used as initial counter for encryption and decryption.

6.6.6.1 Example usage with AES-256 In case of AES-256, the encryption secret is provided in a
binary file that should contain a concatenation of a 32B key and a 16B IV.
In the examples provided, the test application uses the following parameters:
key = "0123456789abcdef0123456789abcdef"
iv = "0123456789abcdef"

So it is easy to prepare the encryption secret in the test scripts or from the command line using:
echo -n "0123456789abcdef0123456789abcdef0123456789abcdef" > enc_key.der

The sign.py script can now be invoked to produce a signed+encrypted image, by using the extra
argument --encrypt followed by the secret file. To select AES-256, use the --aes256 option.
./tools/keytools/sign.py --aes256 --encrypt enc_key.der test-app/image.bin

wolfboot_signing_private_key.der 24

which will produce as output the file test-app/image_v24_signed_and_encrypted.bin, that can
be transferred to the target’s external device.

6.6.7 API usage in the application

When transferring the image, the application can still use the libwolfboot API functions to store the
encrypted firmware. When called from the application, the function ext_flash_write will store the
payload unencrypted.
In order to trigger an update, before calling wolfBoot_update_trigger it is necessary to set the
temporary key used by the bootloader by calling wolfBoot_set_encrypt_key.
An example of encrypted update trigger can be found in the stm32wb test application source code (in
../test-app/app_stm32wb.c).

6.7 Application interface for interactions with the bootloader
wolfBoot offers a small interface to interact with the images stored in the partition, explicitly initiate
an update and confirm the success of a previously scheduled update.

6.7.1 Compiling and linking with libwolfboot

An application that requires interactions with wolfBoot must include the header file:
#include <wolfboot/wolfboot.h>
This exports the API function declarations, and the predefined values for the flags and tags stored
together with the firmware images in the two partitions.

COPYRIGHT ©2021 wolfSSL Inc. 50

6.7 Application interface for interactions with the bootloader 6 WOLFBOOT FEATURES

For more information about flash partitions, flags and states see Flash partitions.

6.7.2 API

libwolfboot provides low-level access interface to flash partition states. The state of each partition can
be retrieved and altered by the application.
Basic interaction from the application is provided via the following high-level function calls:
uint32_t wolfBoot_get_image_version(uint8_t part)
void wolfBoot_update_trigger(void)
void wolfBoot_success(void)

6.7.2.1 Firmware version Current (boot) firmware and update firmware versions can be retrieved
from the application using:
uint32_t wolfBoot_get_image_version(uint8_t part)
Or via the shortcut macros:
wolfBoot_current_firmware_version()
and
wolfBoot_update_firmware_version()

6.7.2.2 Trigger an update
• wolfBoot_update_trigger() is used to trigger an update upon the next reboot, and it is nor-
mally used by an update application that has retrieved a new version of the running firmware,
and has stored it in the UPDATE partition on the flash. This function will set the state of the UP-
DATE partition to STATE_UPDATING, instructing the bootloader to perform the update upon the
next execution (after reboot).

wolfBoot update process swaps the contents of the UPDATE and the BOOT partitions, using a tempo-
rary single-block SWAP space.

6.7.2.3 Confirm current image
• wolfBoot_success() indicates a successful boot of a new firmware. This can be called by the
application at any time, but it will only be effective to mark the current firmware (in the BOOT
partition) with the state STATE_SUCCESS, indicating that no roll-back is required. An application
should typically call wolfBoot_success() only after verifying that the basic system features are
up and running, including the possibility to retrieve a new firmware for the next upgrade.

If after an upgrade and reboot wolfBoot detects that the active firmware is still in STATE_TESTING
state, it means that a successful boot has not been confirmed for the application, and will attempt to
revert the update by swapping the two images again.
For more information about the update process, see Firmware Update
For the image format, see Firmware Image

COPYRIGHT ©2021 wolfSSL Inc. 51

7 INTEGRATING WOLFBOOT IN AN EXISTING PROJECT

7 Integrating wolfBoot in an existing project

7.1 Required steps
• See the Targets chapter for reference implementation examples.
• Provide a HAL implementation for the target platform (see Hardware Abstraction Layer)
• Decide a flash partition strategy and modify include/target.h accordingly (see Flash parti-
tions)

• Change the entry point of the firmware image to account for bootloader presence
• Equip the application with the wolfBoot library to interact with the bootloader
• Configure and compile a bootable image with a single “make” command
• For help signing firmware see wolfBoot Signing
• For enabling measured boot see wolfBoot measured boot

7.2 Examples provided
Additional examples available on our GitHub wolfBoot-examples repository here.
The following steps are automated in the default Makefile target, using the baremetal test applica-
tion as an example to create the factory image. By running make, the build system will:

• Create a Ed25519 Key-pair using the keygen tool
• Compile the bootloader. The public key generated in the step above is included in the build
• Compile the firmware image from the test application in the ‘test_app’ directory
• Re-link the firmware to change the entry-point to the start address of the primary partition
• Sign the firmware image using the sign tool
• Create a factory image by concatenating the bootloader and the firmware image

The factory image can be flashed to the target device. It contains the bootloader and the signed initial
firmware at the specified address on the flash.
The sign.py tool transforms a bootable firmware image to comply with the firmware image format
required by the bootloader.
For detailed information about the firmware image format, see Firmware image
For detailed information about the configuration options for the target system, see Compiling wolf-
Boot

7.3 Upgrading the firmware
• Compile the new firmware image, and link it so that its entry point is at the start address of the
primary partition

• Sign the firmware using the sign.py tool and the private key generated for the factory image
• Transfer the image using a secure connection, and store it to the secondary firmware slot
• Trigger the image swap using libwolfboot wolfBoot_update_trigger() function. See wolf-
Boot library API for a description of the operation

• Reboot to let the bootloader begin the image swap
• Confirm the success of the update using libwolfboot wolfBoot_success() function. See wolf-
Boot library API for a description of the operation

For more detailed information about firmware update implementation, see Firmware Update

COPYRIGHT ©2021 wolfSSL Inc. 52

https://github.com/wolfSSL/wolfBoot-examples

8 TROUBLESHOOTING

8 Troubleshooting

8.1 Python errors when signing a key
Traceback (most recent call last):

File "tools/keytools/keygen.py", line 135, in <module>
rsa = ciphers.RsaPrivate.make_key(2048)

AttributeError: type object 'RsaPrivate' has no attribute 'make_key'

Traceback (most recent call last):
File "tools/keytools/sign.py", line 189, in <module>

r, s = ecc.sign_raw(digest)
AttributeError: 'EccPrivate' object has no attribute 'sign_raw'

You need to install the latest wolfcrypt-py here: https://github.com/wolfSSL/wolfcrypt-py
Use pip3 install wolfcrypt.
Or to install based on a local wolfSSL installation use:
cd wolfssl
./configure --enable-keygen --enable-rsa --enable-ecc --enable-ed25519 --

enable-des3 CFLAGS="-DFP_MAX_BITS=8192 -DWOLFSSL_PUBLIC_MP"
make
sudo make install
cd wolfcrypt-py
USE_LOCAL_WOLFSSL=/usr/local pip3 install .

8.2 Python errors in command line parser running keygen.py
Traceback (most recent call last):

File "tools/keytools/keygen.py", line 173, in <module>
parser.add_argument('-i', dest='pubfile', nargs='+', action='extend')

File "/usr/lib/python3.7/argparse.py", line 1361, in add_argument
raise ValueError('unknown action "%s"' % (action_class,))

ValueError: unknown action "extend"

The version of the python interpreter installed on the system is too old. To run keygen.py you need
to upgrade python to v.3.8 or greater.

8.3 Contact support
If you run into problems and need help, contact us at support@wolfssl.com

COPYRIGHT ©2021 wolfSSL Inc. 53

	Introduction
	Compiling wolfBoot
	Generate a new configuration
	Platform selection
	Flash partitions

	Bootloader features
	Change DSA algorithm
	Incremental updates
	Enable debug symbols
	Disable interrupt vector relocation
	Limit stack usage
	Disable Backup of current running firmware
	Enable workaround for `write once' flash memories
	Allow version roll-back
	Enable optional support for external flash memory
	Executing flash access code from RAM
	Enable Dual-bank hardware-assisted swapping
	Store UPDATE partition flags in a sector in the BOOT partition
	Invert logic of flags
	Using Mac OS/X
	Enabling mitigations against glitches and fault injections

	Targets
	Supported Targets
	STM32F4
	STM32F4 Programming
	STM32F4 Debugging

	STM32L4
	STM32L5
	Scenario 1: TrustZone Enabled
	Scenario 2: Trustzone Disabled
	Debugging

	STM32U5
	Scenario 1: TrustZone Enabled
	Scenario 2: TrustZone Disabled
	Debugging

	STM32L0
	STM32L0 Building

	STM32G0
	Building STM32G0
	Debugging STM32G0
	STM32G0 Debugging

	STM32WB55
	STM32WB55 Building
	STM32WB55 with OpenOCD
	STM32WB55 with ST-Link
	STM32WB55 Debugging

	SiFive HiFive1 RISC-V
	Features
	Default Linker Settings
	Stock bootloader
	Application Code
	wolfBoot configuration
	Build Options
	Loading
	Debugging

	STM32F7
	Build Options
	Loading the firmware
	STM32F7 Debugging

	STM32H7
	Build Options
	STM32H7 Programming
	STM32H7 Testing
	STM32H7 Debugging

	NXP LPC54xxx
	Build Options
	Loading the firmware
	Debugging with JLink

	Cortex-A53 / Raspberry PI 3 (experimental)
	Compiling the kernel
	Testing with qemu-system-aarch64

	Xilinx Zynq UltraScale
	QNX

	Cypress PSoC-6
	Building
	Clock settings
	Loading the firmware
	Debugging

	NXP iMX-RT
	Building wolfBoot

	NXP Kinetis
	Buld options
	Example partioning for K82

	NXP T2080 PPC
	Building wolfBoot

	TI Hercules TMS570LC435
	Qemu x86-64 UEFI
	Prerequisites:
	Configuration
	Building and running on qemu

	Nordic nRF52840
	Simulated

	Hardware abstraction layer
	Supported platforms
	API
	Optional support for external flash memory

	Flash partitions
	Flash memory partitions
	Bootloader partition
	BOOT partition
	UPDATE partition

	Partition status and sector flags
	Overview of the content of the FLASH partitions

	wolfBoot Features
	Signing
	wolfBoot key tools installation
	Install Python3
	Install wolfCrypt
	Install wolfcrypt-py
	Install wolfBoot
	C Key Tools
	Command Line Usage
	Key generation and management
	Signing Firmware
	Signing Firmware with External Private Key (HSM)

	Measured Boot using wolfBoot
	Concept
	Configuration

	Firmware image
	Firmware entry point
	Firmware image header

	Firmware update
	Updating Microcontroller FLASH
	Update procedure description

	Remote External flash memory support via UART
	Bootloader setup
	Host side: UART flash server
	External flash update mechanism

	Encrypted external partitions
	Rationale
	Temporary key storage
	Libwolfboot API
	Symmetric encryption algorithms
	Chacha20-256
	AES-CTR
	API usage in the application

	Application interface for interactions with the bootloader
	Compiling and linking with libwolfboot
	API

	Integrating wolfBoot in an existing project
	Required steps
	Examples provided
	Upgrading the firmware

	Troubleshooting
	Python errors when signing a key
	Python errors in command line parser running keygen.py
	Contact support

