
wolfCrypt JCE Provider and JNI Wrapper Manual

2024-03-13

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Requirements 4
2.1 Java / JDK . 4
2.2 JUnit . 4
2.3 make and ant . 4
2.4 wolfSSL / wolfCrypt Library . 4

2.4.1 Compiling wolfSSL/wolfCrypt . 4

3 Compilation 6
3.1 API Javadocs . 7

4 Installation 8
4.1 Installation at Runtime . 8
4.2 Installation at OS / System Level . 8

5 Package Design 9

6 Supported Algorithms and Classes 10

7 JAR Code Signing 11
7.1 Using a Pre-Signed JAR File . 11

8 Usage 12

COPYRIGHT ©2021 wolfSSL Inc. 2

1 INTRODUCTION

1 Introduction

The JCE (Java Cryptography Extension) framework supports the installation of custom Cryptographic
Service Providers which can in turn implement a subset of the underlying cryptographic functionality
used by the Java Security API.
This document describes the details and usage of the wolfCrypt JCE provider. The wolfCrypt JCE
provider (wolfJCE) wraps the native wolfCrypt cryptography library for compatibility with the Java
Security API. See the Github repository here.
The wolfcrypt-jni package contains both the wolfCrypt JNI wrapper in addition to the JCE provider. The
JNI wrapper can be used independently if desired.

COPYRIGHT ©2021 wolfSSL Inc. 3

https://github.com/wolfSSL/wolfcrypt-jni

2 REQUIREMENTS

2 Requirements

2.1 Java / JDK
wolfJCE requires Java to be installed on the host system. There are several JDK variants available to
users and developers - including the Oracle JDK and OpenJDK. wolfJCE has currently been tested with
OpenJDK, Oracle JDK, and Android. OpenJDK and Android do not require JCE providers to be code
signed, whereas the Oracle JDK does. For details on code signing, please see Chapter 7
For reference, the specific version of OpenJDK which wolfJCE has been tested with is:
$ java -version
Openjdk version “1.8.0”_91
OpenJDK Runtime Environment (build 1.8.0_91-8u91-b14-3ubuntu1~15.10.1~b14)
OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode)

It has also been tested with Oracle JDK 1.8.0_121, and Android 24.

2.2 JUnit
In order to run the unit tests, JUnit is required to be installed on the development system. JUnit can
be downloaded from the project website at www.junit.org.
To install JUnit on a Unix/Linux/OSX system: 1. Download “ junit-4.13.jar ” and “ hamcrest-all-1.3.jar
”from junit.org/junit4/. At the time of writing, the mentioned .jar files could be downloaded from the
following links:
LINK: junit-4.13.jar LINK: hamcrest-all-1.3.jar

2. Place these JAR files on your system and set JUNIT_HOME to point to that location. Ex:
$ export JUNIT_HOME=/path/to/jar/files

2.3 make and ant
Both “make” and “ant” are used to compile native C code and Java code, respectively.
Please ensure that these are installed on your development machine.

2.4 wolfSSL / wolfCrypt Library
As a wrapper around the native wolfCrypt library, wolfSSL must be installed on the host platform and
placed on the include and library search paths. wolfJCE can be compiled against either the FIPS or
non-FIPS version of the wolfSSL/wolfCrypt native library.

2.4.1 Compiling wolfSSL/wolfCrypt

To compile and install wolfSSL in a Unix/Linux environment for use with wolfJCE, please follow build
instructions in the wolfSSL Manual. The most common way to compile wolfSSL is with the Autoconf
system.
You can install a wolfSSL (wolfssl-x.x.x), wolfSSL FIPS release (wolfssl-x.x.x-commercial-fips), or wolfSSL
FIPS Ready release.In any of these cases, you will need the --enable-keygen ./configure option.
wolfSSL Standard Build:

COPYRIGHT ©2021 wolfSSL Inc. 4

https://search.maven.org/search?q=g:junit%20AND%20a:junit
https://search.maven.org/artifact/org.hamcrest/hamcrest-all/1.3/jar

2.4 wolfSSL / wolfCrypt Library 2 REQUIREMENTS

$ cd wolfssl-x.x.x
$./configure --enable-keygen
$ make check
$ sudo make install

wolfSSL FIPSv1 Build:
$ cd wolfssl-x.x.x-commercial-fips
$./configure --enable-fips --enable-keygen
$ make check
$ sudo make install

wolfSSL FIPSv2 Build:
$ cd wolfssl-x.x.x-commercial-fips
$./configure --enable-fips=v2 --enable-keygen
$ make check
$ sudo make install

wolfSSL FIPS Ready Build:
$ cd wolfssl-x.x.x-commercial-fips
$./configure --enable-fips=ready --enable-keygen
$ make check
$ sudo make install

This will install the wolfSSL library to your system default installation location. Onmany platforms this
is:
/usr/local/lib
/usr/local/include

COPYRIGHT ©2021 wolfSSL Inc. 5

3 COMPILATION

3 Compilation

Before following steps in this section, please ensure that the dependencies in Chapter 2 above are
installed.
First, copy the correct “makefile” for your system, depending if you are on Linux or OS X. For example,
if you were on Linux:
$ cd wolfcrypt-jni
$ cp makefile.linux makefile
If you are instead on Mac OSX:
$ cd wolfcrypt-jni
$ cp makefile.macosx makefile

Then proceed to compile the native (C source) code with “make”:
$ cd wolfcrypt-jni
$ make

To compile the Java sources, “ant” is used. There are several ant targets to compile either the JNI or
JCE (includes JNI) packages, in either debug or release mode. Running regular “ant” will give usage
options:
$ ant
...
build:
[echo] wolfCrypt JNI and JCE
[echo]

--

[echo] USAGE:
[echo] Run one of the following targets with ant:
[echo] build-jni-debug | builds debug JAR with only wolfCrypt JNI classes
[echo] build-jni-release | builds release JAR with only wolfCrypt JNI classes
[echo] build-jce-debug | builds debug JAR with JNI and JCE classes
[echo] build-jce-release | builds release JAR with JNI and JCE classes
[echo]

--

Use the build target that matches your need. For example, if you want to build the wolfJCE provider in
release mode, run:
$ ant build-jce-release

And, to run the JUnit tests, run the following command. This will compile only the tests that match the
build that was done (JNI vs. JCE) and run those tests as well.
$ ant test

To clean the both Java JAR and native library:
$ ant clean
$ make clean

COPYRIGHT ©2021 wolfSSL Inc. 6

3.1 API Javadocs 3 COMPILATION

3.1 API Javadocs
Running ant will generate a set of Javadocs under the wolfcrypt-jni/docs directory. To view the
root document, open the following file in a web browser:
wolfcrypt-jni/docs/index.html

COPYRIGHT ©2021 wolfSSL Inc. 7

4 INSTALLATION

4 Installation

There are two ways that wolfJCE can be installed and used:

4.1 Installation at Runtime
To install and use wolfJCE at runtime, first make sure that “libwolfcryptjni.so” is on your system’s
library search path. On Linux, you can modify this path with:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/add

Next, place the wolfCrypt JNI / wolfJCE JAR file (wolfcrypt-jni.jar) on your Java classpath. You can do
this by adjusting your system classpath settings, or at compile time and runtime like so:

$ javac -classpath <path/to/jar> ...
$ java -classpath <path/to/jar> ...

Finally, in your Java application, add the provider at runtime by importing the provider class and calling
Security.addProvider():

import com.wolfssl.provider.jce.WolfCryptProvider;
public class TestClass {

public static void main(String args[]) {
...
Security. **addProvider** (new **WolfCryptProvider**());
...

}
}

To print a list of all installed providers for verification, you can do:
Provider[] providers = Security. **getProviders** ()
for (Provider prov:providers) {

System.out.println(prov);
}

4.2 Installation at OS / System Level
To install thewolfJCE provider at the system level, copy the JAR into the correct Java installation directory
for your OS and verify the shared library is on your library search path.
Add the wolfJCE JAR file (wolfcrypt-jni.jar) and shared library (libwolfcryptjni.so) to the following
directory:

$JAVA_HOME/jre/lib/ext directory

For example, on Ubuntu with OpenJDK this may be similar to:
/usr/lib/jvm/java-8-openjdk-amd64/jre/lib/ext

Next, add an entry to the java.security file that looks similar to the following:
security.provider.N=com.wolfssl.provider.jce.WolfCryptProvider

The java.security file will be located at:
$JAVA_HOME/jre/lib/security/java.security

Replacing “N” with the order of precedence you would like the WolfCryptProvider to have in compari-
son to other providers in the file.

COPYRIGHT ©2021 wolfSSL Inc. 8

5 PACKAGE DESIGN

5 Package Design

wolfJCE is bundled together with the “wolfcrypt-jni” JNI wrapper library. Since wolfJCE depends on the
underlying JNI bindings for wolfCrypt, it is compiled into the same native library file and JAR file as
wolfcrypt-jni.
For users wanting to use only the JNI wrapper, it is possible to compile a version of “wolfcrypt-jni.jar”
that does not include the JCE provider classes.
wolfJCE / wolfCrypt JNI package structure:
wolfcrypt-jni /
AUTHORS
build.xml ant build script
COPYING
docs / Javadocs
jni / native C JNI binding source files
lib / output directory for compiled library
LICENSING
Makefile generic Makefile
Makefile.linux Linux-specific Makefile
Makefile.osx OSX-specific Makefile
README_JCE.md
README.md
src /

main/java/ Java source files
test/java/ Test source files

The wolfJCE provider source code is located in the “src/main/java/com/wolfssl/provider/jce” directory,
and is part of the “com.wolfssl.provider.jce” Java package.
The wolfCrypt JNI wrapper is located in the “src/main/java/com/wolfssl/wolfcrypt” directory and is part
of the “com.wolfssl.wolfcrypt” Java package. Users of JCE will not need to use this package directly,
as it will be consumed by the wolfJCE classes.
Once wolfCrypt-JNI and wolfJCE have been compiled, the output JAR and native shared library are
located in the “./lib” directory. Note, these contain BOTH the wolfCrypt JNI wrapper as well as the
wolfJCE provider when a JCE build is compiled.
lib/

libwolfcryptjni.so
wolfcrypt-jni.jar

COPYRIGHT ©2021 wolfSSL Inc. 9

6 SUPPORTED ALGORITHMS AND CLASSES

6 Supported Algorithms and Classes

wolfJCE currently supports the following algorithms and classes:
MessageDigest Class

MD5
SHA-1
SHA-256
SHA-384
SHA-512

SecureRandom Class
HashDRBG

Cipher Class
AES/CBC/NoPadding
DESede/CBC/NoPadding
RSA/ECB/PKCS1Padding

Mac Class
HmacMD5
HmacSHA1
HmacSHA256
HmacSHA384
HmacSHA512

Signature Class
MD5withRSA
SHA1withRSA
SHA256withRSA
SHA384withRSA
SHA512withRSA
SHA1withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

KeyAgreement Class
DiffieHellman
DH
ECDH

KeyPairGenerator Class
EC
DH

COPYRIGHT ©2021 wolfSSL Inc. 10

7 JAR CODE SIGNING

7 JAR Code Signing

The Oracle JDK/JVM require that JCE providers be signed by a code signing certificate that has been
issued by Oracle. The wolfcrypt-jni package’s ant build script supports code signing the generated
“wolfcrypt-jni.jar” file by placing a custom properties file in the root of the package directory before
compilation.
To enable automatic code signing, create a file called “codeSigning.properties” and place it in the root
of the “wolfcrypt-jni” package. This is a properties file which should include the following:
sign.alias=<signing alias in keystore>
sign.keystore=<path to signing keystore>
sign.storepass=<keystore password>
sign.tsaurl=<timestamp server url>

When this file is present when “ant” or “ant test” is run, it will sign “wolfcrypt-jni.jar” using the keystore
and alias provided.

7.1 Using a Pre-Signed JAR File
wolfSSL (company) has it’s own set of code signing certificates from Oracle that allow wolfJCE to be au-
thenticated in the Oracle JDK. With each release of wolfJCE, wolfSSL ships a couple pre-signed versions
of the ‘wolfcrypt-jni.jar”, located at:
wolfcrypt-jni-X.X.X/lib/signed/debug/wolfcrypt-jni.jar wolfcrypt-jni-X.X.X/lib/signed/release/wolfcrypt-
jni.jar
This pre-signed JAR can be used with the JUnit tests, without having to re-compile the Java source files.
To run the JUnit tests against this JAR file:
$ cd wolfcrypt-jni-X.X.X $ cp ./lib/signed/release/wolfcrypt-jni.jar ./lib $ ant test

COPYRIGHT ©2021 wolfSSL Inc. 11

8 USAGE

8 Usage

For usage, please follow the Oracle/OpenJDK Javadocs for the classes specified in Chapter 6 above.
Note that youwill need to explicitly request the “wolfJCE” provider if it has been set lower in precedence
than other providers that offer the same algorithm in the java.security file. For example, to use the
wolfJCE provider with theMessageDigest class for SHA-1 youwould create aMessageDigest object like
so:
MessageDigest md = MessageDigest.getInstance“(SHA”-1, “”wolfJCE);

Please email support@wolfssl.com with any questions or feedback.

COPYRIGHT ©2021 wolfSSL Inc. 12

	Introduction
	Requirements
	Java / JDK
	JUnit
	make and ant
	wolfSSL / wolfCrypt Library
	Compiling wolfSSL/wolfCrypt

	Compilation
	API Javadocs

	Installation
	Installation at Runtime
	Installation at OS / System Level

	Package Design
	Supported Algorithms and Classes
	JAR Code Signing
	Using a Pre-Signed JAR File

	Usage

