wolfCrypt JCE Provider and JNI Wrapper Manual

7
wolfss!

2025-04-30

CONTENTS CONTENTS
Contents

1 Introduction 3

2 Requirements 4

2.1 Java/ DK .o e e e 4

22 JUNIt . Lo e e e e e e e e 4

23 makeandant e 4

2.4 wolfSSL/wolfCryptLibrary e 4

2.4.1 CompilingwolfSSL/wolfCrypt 4

3 Compilation 6

3.1 APIJavadocs L e e 7

4 Installation 8

4.1 Installation atRuntime Lo e 8

4.2 Installation at OS/System Level (Java<=8) o . i 8

5 Package Design 10

6 Supported JCE Algorithms and Classes 11

7 JAR Code Signing 13

7.1 UsingaPre-SignedJARFile 13

8 Usage 14

9 KeyStore Implementations 15

9.1 JKStoWKS MigrationGuide e 15

9.1.1 FIPS 140-2 / 140-3 Algorithm Requirement Considerations 15

9.1.2 WolfSSLKeyStore Format (WKS) 15

9.1.3 Converting Existing KeyStore FilestoWKS, 15

9.1.4 Viewing Contents of WolfSSLKeyStore (WKS) File 16

9.1.5 Changing Application Usage of KeyStore Type 16

9.1.6 Converting System CA Certificate KeyStore Files 17

9.1.7 WHKS KeyStore UsewithwolfJSSE 18

9.1.8 SUPPOIt e e e e e e e 18

COPYRIGHT ©2024 wolfSSL Inc. 2

17 INTRODUCTION

1 Introduction

The JCE (Java Cryptography Extension) supports the installation of custom Cryptographic Service
Providers. Those providers can implement a subset of the underlying cryptographic functionality
used by the Java Security APL.

This manual describes the details and usage of the wolfCrypt JCE provider. The wolfCrypt JCE provider
(wolfJCE) uses JNI to wrap the native wolfCrypt cryptography library for compatibility with the Java
Security APIL. The Github repository for wolfCrypt JNI/JCE is located here.

The wolfcrypt-jni package contains both the wolfCrypt JNI wrapper and wolfJCE JCE provider. The JNI
wrapper can be used independently if desired.

COPYRIGHT ©2024 wolfSSL Inc. 3

https://github.com/wolfSSL/wolfcrypt-jni

2 REQUIREMENTS

2 Requirements

2.1 Java/JDK

wolfJCE requires Java to be installed on the host system. There are several JDK variants available to
users and developers - including the Oracle JDK and Open)DK. wolfJCE has currently been tested with
OpenJDK, Oracle JDK, Amazon Coretto, Zulu, Temurin, Microsoft JDK, and Android. Some JDK imple-
mentations such as Open)DK and Android do not require JCE providers to be code signed, whereas the
Oracle JDK does. For details on code signing, please see Chapter 7

2.2 JUnit

JUnit is required to be installed on the development system in order to run unit tests. JUnit4 can be
downloaded from the project website at www.junit.org.

To install JUnit4 on a Unix/Linux/OSX system:

1) Download “ junit-4.13.jar " and “ hamcrest-all-1.3.jar "from junit.org/junit4/. At the time of writ-
ing, the mentioned .jar files could be downloaded from the following links:

Junit: junit-4.13.jar
Hamcrest: hamcrest-all-1.3.jar

2) Place these JAR files on your system and set JUNIT_HOME to point to the directory location they
are at. For example:

$ export JUNIT_HOME=/path/to/jar/files

2.3 make and ant

“make” and “ant” are used to compile native C code and Java code, respectively. Please ensure that
these are installed on your development machine.

2.4 wolfSSL / wolfCrypt Library

As a wrapper around the native wolfCrypt library, wolfSSL must be installed and placed on the include
and library search paths. wolfJCE can be compiled against either the FIPS 140-2/3 or non-FIPS version
of the wolfSSL/wolfCrypt native library.

2.4.1 Compiling wolfSSL/wolfCrypt

To compile and install native wolfSSL in a Unix/Linux environment, please follow build instructions in
the wolfSSL Manual. The most common way to compile wolfSSL is with the Autoconf system using
configure.

You can build and install a wolfSSL (wolfssl-x.x.x), wolfSSL FIPS release (wolfssl-x.x.x-commercial-fips),
or wolfSSL FIPS Ready release. With any of these archives, you will need to use the --enable-jni
.JJconfigure option in addition to any other package-specific configure option requirements (ex: --
enable-fips).

wolfSSL Standard Build:

$ cd wolfssl-x.x.x

$./configure --enable-jni
$ make check

$ sudo make install

COPYRIGHT ©2024 wolfSSL Inc. 4

https://search.maven.org/search?q=g:junit%20AND%20a:junit
https://search.maven.org/artifact/org.hamcrest/hamcrest-all/1.3/jar
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/documentation/manuals/wolfssl/index.html

2.4 wolfSSL / wolfCrypt Library

2 REQUIREMENTS

wolfSSL FIPSv1 Build:

$ cd wolfssl-x.x.x-commercial-fips

$./configure --enable-fips --enable-jni
$ make check

$ sudo make install

wolfSSL FIPSv2 Build:

$ cd wolfssl-x.x.x-commercial-fips

$./configure --enable-fips=v2 --enable-jni
$ make check

$ sudo make install

wolfSSL FIPSv5 Build:

$ cd wolfssl-x.x.x-commercial-fips

$./configure --enable-fips=v5 --enable-jni
$ make check

$ sudo make install

wolfSSL FIPS Ready Build:

$ cd wolfssl-x.x.x-commercial-fips

$./configure --enable-fips=ready --enable-jni
$ make check

$ sudo make install

This will install the wolfSSL library to your system default installation location. On many platforms this

IS:

/usr/local/lib
/usr/local/include

COPYRIGHT ©2024 wolfSSL Inc. 5

3 COMPILATION

3 Compilation

Before following steps in this section, please ensure that the dependencies in Chapter 2 above are
installed.

Before running make, copy the correct “makefile” for your system, depending if you are on Linux/Unix
or MacOS. For example, if you were on Linux:

$ cd wolfcrypt-jni
$ cp makefile.linux makefile

If you are instead on Mac OSX:

$ cd wolfcrypt-jni
$ cp makefile.macosx makefile

Then compile the native CJNI source code with “make”. This will generate the native JNI shared library
(1ibwolfcryptjni.so/dylib).

$ cd wolfcrypt-jni
$ make

To compile the Java sources, “ant” is used. There are several ant targets to compile either the JNI or
JCE (includes JNI) packages, in either debug or release mode. Running regular “ant” will give usage
options:

$ ant
build:
[echo] wolfCrypt JNI and JCE
[echo]

[echo] USAGE:

[echo] Run one of the following targets with ant:

[echo] build-jni-debug | builds debug JAR with only wolfCrypt JNI classes
[echo] build-jni-release | builds release JAR with only wolfCrypt JNI classes
[echo] build-jce-debug | builds debug JAR with JNI and JCE classes

[echo] build-jce-release | builds release JAR with JNI and JCE classes

Use the build target that matches your needs. For example, if you want to build the wolf]CE provider
in release mode, run:

$ ant build-jce-release

To run the JUnit tests, run ant test. This will compile only the tests that match the build that was
done (JNI vs. JCE) and run those tests.

$ ant test

To clean the both Java JAR and native library, run:

$ ant clean
$ make clean

COPYRIGHT ©2024 wolfSSL Inc. 6

3.1 API Javadocs 3 COMPILATION

3.1 APIjavadocs

Running ant will generate a set of Javadocs under the wolfcrypt-jni/docs/javadoc directory. To
view the Javadoc index, open the following file in a web browser:

wolfcrypt-jni/docs/javadoc/index.html

COPYRIGHT ©2024 wolfSSL Inc. 7

4 INSTALLATION

4 Installation

There are two ways that wolfJCE can be installed and used - either at runtime inside a single Java
application, or at the system level for all Java applications to use.

4.1 Installation at Runtime

Toinstall and use wolfJCE at runtime inside a single application, first make sure that “libwolfcryptjni.so”
(or “libwolfcryptjni.dylib” if on MacOS) is on your system library search path.

On Linux, you can modify this path with:
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/add

On MacQOS, you can use DYLD_LIBRARY_PATH instead:

$ export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/path/to/add

Next, place the wolfCrypt JNI/JCE JAR file (wolfcrypt-jni.jar) on your Java classpath. You can do this by
adjusting your system classpath settings or at compile time and runtime like so:

$ javac -classpath <path/to/jar> ...

$ java -classpath <path/to/jar> ...

Finally, in your Java application, add the provider at runtime by importing the provider class and calling
Security.insertProviderAt() to insert the wolfCryptProvider in the Java Provider list as the top
most priority provider. Note that provider location 1 is the highest priority location.

import com.wolfssl.provider.jce.WolfCryptProvider;

public class TestClass {
public static void main(String args[]) {

Security.insertProviderAt(new WolfCryptProvider(), 1);

}

To print a list of all installed providers from a Java application for verification, you can do:

Provider[] providers = Security.getProviders();
for (Provider prov:providers) {
System.out.println(prov);

}

4.2 Installation at OS / System Level (Java <= 8)

wolfJCE can be installed at the system level so that any Java application consuming Java Security APIs
for cryptography can leverage wolfJCE.

Toinstall the wolfJCE provider at the system level, copy the JAR into the correct Java installation directory
for your OS and JDK and verify the shared library is on your library search path.

Add the wolfCrypt JNI/JCE JAR file (wolfcrypt-jni.jar) and shared library (libwolfcryptjni.so or lib-
wolfcryptjni.dylib) to the following directory:

$JAVA_HOME/jre/lib/ext

COPYRIGHT ©2024 wolfSSL Inc. 8

4.2 Installation at OS / System Level (Java <= 8) 4 INSTALLATION

For example, on Ubuntu with Open]DK this may be similar to:

/usr/1ib/jvm/java-8-openjdk-amd64/jre/lib/ext

Next add an entry to the java.security file that looks similar to the following, adding a provider
entry for WolfCryptProvider:

security.provider.N=com.wolfssl.provider.jce.WolfCryptProvider

The java.security file will be located at:

$JAVA_HOME/jre/lib/security/java.security

Replacing “N” with the order of precedence you would like the WolfCryptProvider to have in compari-
son to other providers in the file.

COPYRIGHT ©2024 wolfSSL Inc. 9

5 PACKAGE DESIGN

5 Package Design

wolfJCE is bundled together with the “wolfcrypt-jni” JNI wrapper library. Since wolfJCE depends on the
underlying JNI bindings for wolfCrypt, it is compiled into the same native library file and JAR file as
wolfcrypt-jni.

For users wanting to use only the JNI wrapper, it is possible to compile a version of “wolfcrypt-jni.jar”
that does not include the JCE provider classes.

wolfJCE / wolfCrypt JNI package structure:
wolfcrypt-jni /

.github GitHub Actions workflows
AUTHORS
COPYING
Changelog.md Version Changelog
IDE/ IDE Project Files
WIN/ Visual Studio Project Files
LICENSING
README . md Main README
README_JCE . md wolfJCE README
build.xml ant build script
docs / Javadocs
examples/ Example applications and certs/keys
certs/ Example cert/keys/KeyStores
provider/ JCE example apps
jni/ Native C JNI binding source files
lib/ Compiled library artifacts
makefile.linux Linux-specific Makefile
makefile.osx 0SX-specific Makefile
pom.xml Maven build file
rpm/ Linux rpm files
scripts/ Test scripts (Facebook Infer, etc)
src/ Source code
main/java Java source files

The wolf]CE provider source code is located in the src/main/java/com/wolfssl/provider/jce
directory, and is part of the “com.wolfssl.provider.jce" Java package.

The wolfCrypt JNI wrapper is located inthe src/main/java/com/wolfssl/wolfcrypt directory and
is part of the “com.wolfssl.wolfcrypt” Java package. Users of JCE will not need to use this package
directly, as it will be consumed by the wolfJCE classes.

Once wolfCrypt JNI and wolfJCE have been compiled, the output JAR and native shared library are
located in the ./1ib directory. Note, these contain BOTH the wolfCrypt JNI wrapper as well as the
wolfJCE provider when a JCE build is compiled.

lib/
libwolfcryptjni.so (libwolfcryptjni.dylib)
wolfcrypt-jni.jar

COPYRIGHT ©2024 wolfSSL Inc. 10

6 SUPPORTED JCE ALGORITHMS AND CLASSES

6 Supported JCE Algorithms and Classes

wolf]CE currently supports the following algorithms and classes:

MessageDigest Class
MD5
SHA-1
SHA-256
SHA-384
SHA-512

SecureRandom Class
DEFAULT (maps to HashDRBG)
HashDRBG

Cipher Class
AES/CBC/NoPadding
AES/CBC/PKCS5Padding
AES/GCM/NoPadding
DESede/CBC/NoPadding
RSA
RSA/ECB/PKCS1Padding

Mac Class
HmacMD5
HmacSHA1
HmacSHA256
HmacSHA384
HmacSHA512

Signature Class
MD5withRSA
SHA1withRSA
SHA256withRSA
SHA384withRSA
SHA512withRSA
SHA1withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

KeyAgreement Class
DiffieHellman
DH
ECDH

KeyPairGenerator Class
RSA
EC
DH

CertPathValidator Class
PKIX

COPYRIGHT ©2024 wolfSSL Inc. 11

6 SUPPORTED JCE ALGORITHMS AND CLASSES

SecretKeyFactory
PBKDF2WithHmacSHA1
PBKDF2WithHmacSHA224
PBKDF2WithHmacSHA256
PBKDF2WithHmacSHA384
PBKDF2WithHmacSHA512
PBKDF2WithHmacSHA3-224
PBKDF2WithHmacSHA3-256
PBKDF2WithHmacSHA3-384
PBKDF2WithHmacSHA3-512

KeyStore
WKS

COPYRIGHT ©2024 wolfSSL Inc. 12

7 JAR CODE SIGNING

7 JAR Code Signing

The Oracle JDK/JVM require that JCE providers be signed by a code signing certificate that has been
issued by Oracle. The wolfcrypt-jni package ant build script supports code signing the generated
wolfcrypt-jni.jar file by placing a custom properties file in the root of the package directory be-
fore compilation.

To enable automatic code signing, create a file called codeSigning.properties and place it in the
root of the wolfcrypt-jni package. This is a properties file which should include the following:

sign.alias=<signing alias in keystore>
sign.keystore=<path to signing keystore>
sign.storepass=<keystore password>
sign.tsaurl=<timestamp server url>

When this file is present when ant or ant test is run, it will sign wolfcrypt-jni.jar using the
keystore and alias provided.

7.1 Using a Pre-Signed JAR File

wolfSSL Inc. (company) has a code signing certificate from Oracle that allows wolfJCE to be authen-
ticated in the Oracle JDK. With each release of wolfJCE, wolfSSL ships pre-signed versions of the
wolfcrypt-jni.jar, located at

wolfcrypt-jni-X.X.X/1lib/signed/debug/wolfcrypt-jni.jar
wolfcrypt-jni-X.X.X/1lib/signed/release/wolfcrypt-jni.jar

These pre-signed JARs can be used with the JUnit tests, without having to re-compile the Java source
files. To run the JUnit tests against this JAR file:

$ cd wolfcrypt-jni-X.X.X
$ cp ./lib/signed/release/wolfcrypt-jni.jar ./lib
$ ant test

COPYRIGHT ©2024 wolfSSL Inc. 13

8 USAGE

8 Usage

For usage, please follow the Oracle/Open)DK Javadocs for the classes specified in Chapter 6. Note that
you will need to explicitly request the wolfJCE provider if it has been set lower in precedence than
other providers that offer the same algorithm in the java.security file. For example, to use the
wolfJCE provider with the MessageDigest class for SHA-1 you would create a MessageDigest object
like so:

MessageDigest md = MessageDigest.getInstance”(SHA"-1, “"wolfJCE);

Please email support@wolfssl.com with any questions or feedback.

COPYRIGHT ©2024 wolfSSL Inc. 14

9 KEYSTORE IMPLEMENTATIONS

9 KeyStore Implementations

wolfJCE includes one Java KeyStore implementation, WolfSSLKeyStore (WKS). It has been designed to
be compatible with wolfCrypt FIPS 140-2 / 140-3 validated modules, using cryptography algorithms
and key sizes within the FIPS validated boundary. The WKS KeyStore type can also be used with non-
FIPS versions of wolfSSL and wolfCrypt. WolfSSLKeyStore (WKS) KeyStores can be used along with
wolfSSL JNI/JSSE as well.

9.1 JKS to WKS Migration Guide

Users of wolfJCE may wish to migrate from existing Java KeyStore files over to WolfSSLKeyStore (WKS)
format to ensure use of FIPS 140-2/3 validated algorithms if using wolfCrypt FIPS. This migration guide
will outline some of the steps and considerations to take into account when migrating KeyStore for-
mats.

9.1.1 FIPS 140-2 / 140-3 Algorithm Requirement Considerations

FIPS 140-2 / 140-3 validation compliance from an application perspective typically means that all cryp-
tography being called or used should come from a FIPS validated cryptographic module. Oftentimes
the strictness of what cryptography needs to be FIPS validated is decided by the end consumer of the
application or product. In some cases, not 100% of the cryptography in a system needs to be FIPS
validated. For example an end consumer may only require cryptography used to secure data in transit
be FIPS validated, and other cryptography (such as the algorithms used for key storage on the device)
do not have the same FIPS requirements.

There are some use cases where the Java KeyStore objects and files being used are out of scope of the
FIPS validation requirement. In those cases, it may be simpler and require fewer changes to a system
to use the existing KeyStore files on a system. Typically these will be JKS or PKCS#12 format stores, as
those are typically generated and consumed by Java applications using Oracle’s SunJSSE and SunJCE
cryptographic provider implementations.

Other applications and use cases will require all cryptography on the system to be FIPS validated. For
these use cases, wolfSSL has created the WolfSSLKeyStore (WKS) store type. This migration guide will
walk through some common areas and considerations when switching from other KeyStore types (ex:
JKS, PKCS#12) over to the WKS type.

9.1.2 WolfSSLKeyStore Format (WKS)

The WKS KeyStore format is unique and different than other Java KeyStore types. It has been designed
to use FIPS 140-2 / 140-3 validated algorithms from the wolfCrypt FIPS module to maintain FIPS vali-
dation conformance.

The WKS implementation uses AES-CBC-256 along with HMAC-SHA512 in an Encrypt-then-MAC for-
mat for encryption of PrivateKey and SecretKey objects. It uses HMAC-SHA512 for KeyStore integrity.
More details on the design of the WKS type can be found in the WolfSSLKeyStore design document
(WolfSSLKeyStore.md).

9.1.3 Converting Existing KeyStore Files to WKS

Existing JKS (.jks), PKCS#12 (.p12), and other Java KeyStore files will need to be converted to WKS type.
This can easily be done using the Java keytool application.

For keytool to convert KeyStore files to WKS, it will need access to compiled wolfCrypt JNI/JSSE li-
brary files (.so/.dylib and .jar). After compiling wolfCrypt JNI/JCE, make sure the native JNI shared

COPYRIGHT ©2024 wolfSSL Inc. 15

9.1 JKS to WKS Migration Guide 9 KEYSTORE IMPLEMENTATIONS

library is on the native library search path. For Linux, add the location of 1ibwolfcryptjni.so to
LD_LIBRARY_PATH, for example:

$ export LD_LIBRARY_PATH=/path/to/wolfcryptjni/lib:$LD_LIBRARY_PATH

If on MacOS, add the location of 1ibwolfcryptjni.dylib to DYLD_LIBRARY_PATH, for example:
$ export DYLD_LIBRARY_PATH=/path/to/wolfcryptjni/lib:$DYLD_LIBRARY_PATH

keytool can then be used to convert between KeyStore types. Usage will be similar to:

$ keytool -importkeystore -srckeystore keystore.jks -destkeystore keystore.wks
-srcstoretype JKS -deststoretype WKS -srcstorepass “password -
deststorepass “"password -provider com.wolfssl.provider.jce.
WolfCryptProvider --providerpath /path/to/wolfcryptjni/lib/wolfcrypt-jni.
jar

The keytool options that need to be used are:

keytool option Description

-importkeystore Import from source keystore to destination

-srckeystore Source keystore to be read from

-destkeystore Destination keystore to write to

-srcstoretype Type of source keystore (ex: JKS)

-deststoretype Type of destination keystore (WKS)

-srcstorepass Password of source keystore

-deststorepass ~ Password for destination keystore

-provider Full class name of KeyStore provider to use for conversion

-providerpath Full path to JCE provider JAR file which contains provider

After converting KeyStore files, you should have new equivalent KeyStore files but in the .wks (WolfSS-
LKeyStore) format.

9.1.4 Viewing Contents of WolfSSLKeyStore (WKS) File

The Java keytool command can be used to view the contents of a WKS KeyStore file. Usage will be
similar to:

keytool -1list -provider com.wolfssl.provider.jce.WolfCryptProvider --
providerpath /path/to/wolfcryptjni/lib/wolfcrypt-jni.jar -storetype WKS -
storepass “"password -keystore keystore.wks

9.1.5 Changing Application Usage of KeyStore Type

Java application code typically either creates new KeyStore objects to store keys and certificates into,
or opens existing KeyStore files for use.

9.1.5.1 Creating New KeyStore Objects Java application code will typically create new KeyStore
objects with code similar to the following, explicitly getting the a KeyStore instance of type “JKS", or
other KeyStore type:

import java.security.KeyStore;

un

String storePass = “"mypassword;

COPYRIGHT ©2024 wolfSSL Inc. 16

9.1 JKS to WKS Migration Guide 9 KEYSTORE IMPLEMENTATIONS

KeyStore store = KeyStore.getInstance”(”JKS);
store.load(null, storePass.toCharArray());

To convert this code to creating a KeyStore of type “WKS", only the type passed to getInstance() will
need to be updated:

KeyStore store = KeyStore.getInstance” ("WKS);

All application code that uses the KeyStore object should work as-is since the WolfSSLKeyStore imple-
mentation extends KeyStoreSpi and implements the methods in that abstract class.

9.1.5.2 Opening Existing KeyStore Files for Use Java application code that opens existing Key-
Store files for use will typically do so with similar code to below:

import java.security.KeyStore;
String storePass = “"mypassword;
KeyStore store = KeyStore.getInstance”(”JKS);
store.load(new FileInputStream(keystoreFilePath),
storePass.toCharArray());

To convert this code to use WKS type, change the call to getInstance () torequest a KeyStore instance
of WKS:

KeyStore store = KeyStore.getInstance” ("WKS);

Then, the actual KeyStore file on disk being read will need to already be in WolfSSLKeyStore (WKS)
format. See te section above about converting KeyStore files to WKS type for instructions on how to
do this.

9.1.6 Converting System CA Certificate KeyStore Files

Java JDK implementations commonly ship with their own KeyStore containing known trusted CA cer-
tificates. This will typically be either in a file called cacerts or jssecacerts. The location of this file
will vary depending on Java version, but can typically be found at the following locations.

cacerts:

$JAVA_HOME/1lib/security/cacerts (JDK 9+)
$JAVA_HOME/jre/lib/security/cacerts (JDK <= 8)
jssecacerts:

$JAVA_HOME/1lib/security/jssecacerts (JDK 9+)

$JAVA_HOME/jre/lib/security/jssecacerts (JDK <= 8)

The default cacerts. jks password is “changeit”. If using wolfCrypt FIPS 140-2 / 140-3 the mini-
mum HMAC key size is 14 bytes. Since HMAC is used for the KeyStore integrity checks and MAC on
PrivateKey/SecretKey objects, KeyStore passwords must be at least 14 characters. Because of this re-
striction, when converting system CA KeyStore files to WKS type, the password should be updated, to
something like “changeitchangeit” for example.

wolfCrypt JNI/JCE includes a helper bash script which has been set up to try and detect system CA
KeyStore files and convert them to WKS type. This script is located at:

wolfcryptjni/examples/certs/systemcerts/system-cacerts-to-wks.sh

COPYRIGHT ©2024 wolfSSL Inc. 17

9.1 JKS to WKS Migration Guide 9 KEYSTORE IMPLEMENTATIONS

This script should be run from the directory where it resides. Successful execution will result in local
copies of the cacerts and/or jssecacerts KeyStore files created and placed in the same directory
as the script, but in WKS format.

./system-cacerts-to-wks.sh

JAVA_HOME already set = /path/to/java/installation
Detected Darwin/O0SX host 0S
Java Home = /path/to/java/installation

System cacerts found, converting from JKS to WKS:
FROM: /path/to/java/installation/jre/lib/security/cacerts
TO: /path/to/wolfcryptjni/examples/certs/systemcerts/cacerts.wks
IN PASS (default): changeit
OUT PASS: changeitchangeit

Successfully converted JKS to WKS

You can then copy this cacerts.wks file over to your system JDK location if desired.

9.1.7 WKS KeyStore Use with wolf]JSSE

wolfSSL JNI/JSSE, as of PR 178 has been modified to give preference to loading and using WolfSSLKey-
Store (WKS) KeyStore types.

When auto-loading the system CA/root certificates (ex: jssecacerts, cacerts), wolfJSSE first tries to find
and load a WKS equivalent file at the same location (ex: jssecacerts.wks, cacerts.wks).

Support for a new Java Security property has been added (wolfjsse.keystore.type.required)
which can be used to restrict use of KeyStore type to the one set in this property. This can be used for
example to help conform to wolfCrypt FIPS 140-2/3 crypto usage by setting to “WKS” when wolf|CE is
also used and installed on the system.

The wolfJSSE provider example ClientJSSE. java and ServerJSSE. java have been updated with a
new option to specify the KeyStore type (‘-ksformat).

9.1.8 Support

For support or assistance in converting JKS or other KeyStore file types over to WolfSSLKeyStore (WKS)
types, please email support@wolfssl.com.

COPYRIGHT ©2024 wolfSSL Inc. 18

https://github.com/wolfSSL/wolfssljni/pull/178

	Introduction
	Requirements
	Java / JDK
	JUnit
	make and ant
	wolfSSL / wolfCrypt Library
	Compiling wolfSSL/wolfCrypt

	Compilation
	API Javadocs

	Installation
	Installation at Runtime
	Installation at OS / System Level (Java <= 8)

	Package Design
	Supported JCE Algorithms and Classes
	JAR Code Signing
	Using a Pre-Signed JAR File

	Usage
	KeyStore Implementations
	JKS to WKS Migration Guide
	FIPS 140-2 / 140-3 Algorithm Requirement Considerations
	WolfSSLKeyStore Format (WKS)
	Converting Existing KeyStore Files to WKS
	Viewing Contents of WolfSSLKeyStore (WKS) File
	Changing Application Usage of KeyStore Type
	Converting System CA Certificate KeyStore Files
	WKS KeyStore Use with wolfJSSE
	Support

