
wolfSSL FIPS Ready User Guide

2025-05-09

1

CONTENTS CONTENTS

Contents

1 wolfSSL FIPS Ready 3
1.1 What is Different from a non-FIPS build of wolfSSL? 3

2 Building wolfSSL as FIPS Ready 5
2.1 Unarchive the source . 5
2.2 Configure the build. 5
2.3 Make the library. 5
2.4 Update the in-core memory hash. 5
2.5 Test the build. 6
2.6 Install the library and headers. 6

3 What has changed from the original FIPS 140-2 ready? 7

4 wolfCrypt FIPS Ready API Documentation 8
4.1 Map of API to FIPS 140-3 module services . 8

4.1.1 Digital Signature Service . 8
4.1.2 Generate Key Pair Service . 10
4.1.3 Key Agreement Service . 11
4.1.4 Key Transport Service . 11
4.1.5 Keyed Hash Service . 12
4.1.6 Message Digest Service . 13
4.1.7 Random (Number Generation) Service . 15
4.1.8 Show Status Service . 15
4.1.9 Symmetric Cipher Service . 16
4.1.10 Zeroize Service . 17

COPYRIGHT ©2024 wolfSSL Inc. 2

1 WOLFSSL FIPS READY

1 wolfSSL FIPS Ready

Do you have a project that will need a FIPS approved cryptographic library at a later date, but want
to be ready for it now? wolfSSL FIPS Ready includes the cryptography layer from the public wolfSSL
source tree, along with the FIPS tooling enabled for a FIPS Ready build. FIPS Ready allows application
developers to assure that they have correctly integrated the necessary FIPS setup, and are correctly
using the API and underlying protocols, providing for a seamless transition to the full FIPS certified
wolfSSL library for an application. When the time comes, we will shepherd your operating environ-
ment through testing and add it to the wolfCrypt FIPS 140-3 certificate. In special situations, a new
FIPS 140-3 certificate will be required, but we are ready to provide guidance through the testing and
certification process. In both scenarios, FIPS Ready assures that your applicationwill be fully functional
with wolfCrypt as certified.
FIPS Ready is open source and dual-licensed. wolfSSL Inc distributes FIPS Ready wolfSSL with the
GPLv3 license or can negotiate commercial licensing terms with support if needed beyond the proof
of concept phase.
FIPS is a complicated topic. If you have questions after reviewing this document, then just contact us
at facts -at- wolfssl dot calm. The email address is obfuscated for the spiders, but the calm is for the
calm you’ll feel when you are FIPS Ready.

1.1 What is Different from a non-FIPS build of wolfSSL?
The wolfCrypt FIPS API provides wrappers for all the approved algorithm functions that are within the
FIPS boundary. The FIPS wrappers can be called directly, or you can keep calling the original APIs; at
compile time the API is swapped by the headers so that the FIPSwrapperswill be called either way. The
FIPS wrapper functions check the status of the internal self-testing before calling the actual function.
If the CAST for that specific algorithm has not been run at least one time previously it will run the
first time the algorithm is used. Users now have the option to either pre-emptively test algorithms at
start up if they wish to avoid the test running at a later time or they can just let the test run when the
algorithm is used.
ThewolfCrypt FIPS 140-3 ready codehas a required power-on self-test (POST) that automatically checks
the integrity of the executable in memory, this has not changed since 140-2, only the known answer
tests (KATs) for algorithms not used by the POST are now conditional upon use. The executable is
organized so the code in the FIPS boundary is contiguous in memory. When the application using the
FIPS code starts up, or the shared library is loaded, the default entry point of the library is called, and
the POST runs automatically. It has twomajor parts: the in-corememory check and the known answer
tests (KAT) for the algo used by the POST (HMAC-SHA256).
The POST for HMAC-SHA256 is performed first followed by the in-core memory test. The code in mem-
ory is hashed with HMAC-SHA256. If the hash matches, the test progresses. Otherwise the FIPS mod-
ule is placed in an error state and all calls into the module will fail. In this case, the FIPS source code
must be updated with the correct integrity hash, and only after recompilation can themodule success-
fully initialize.
All other algorithms in the FIPS boundary are tested with canned data the first time they are used
or optionally whenever the developer wants them to run. The output is compared to pre-computed
known answers. The test values are all inside the boundary and are checked at the time they are called.
Several of the tests have a random component, for example a sign and verify, so a known piece of data
is signed and then verified with a canned key. The key generation is tested in a similar fashion.
The FIPS boundary provides confirmation about multiple aspects of your application. The processing
of private key access that will assure proper unlocking and relocking of keys according to the FIPS
specification. The assurance that no FIPS-forbidden modes or key sizes are being used, along with
proper entropy source setup. FIPS Ready also helps discover conflicts with outside sub-system inte-

COPYRIGHT ©2024 wolfSSL Inc. 3

1.1 What is Different from a non-FIPS build of wolfSSL? 1 WOLFSSL FIPS READY

gration your application needs, for example determining if other applications or devices on a network
support your new FIPS Ready cipher suites for communication between each other.

COPYRIGHT ©2024 wolfSSL Inc. 4

2 BUILDING WOLFSSL AS FIPS READY

2 Building wolfSSL as FIPS Ready

Once you have a copy of the source code unarchived into a directory, building is similar to normal
wolfSSL, but with extra steps.
The following steps assume you are on a Linux or macOS box and are using the GPLv3 distribution of
wolfSSL FIPS Ready to make a shared library to be installed into the system.

2.1 Unarchive the source
$ tar xzvf wolfssl-5.6.4-gplv3-fips-ready.tar.gz

This unarchives the source into the directory wolfssl-5.6.4-gplv3-fips-ready. Change into this directory.
If you received a commercial release, replace gplv3 with commercial and .tar.gz with .7z and tar xzvf
with 7z x -p found in the distribution email.

2.2 Configure the build.
$./configure --enable-fips=ready

This command configures the Makefile to build wolfSSL for FIPS Ready.

2.3 Make the library.
$ make

This compiles all the sources and links together the library. It also builds the example tools and testing
tools.

2.4 Update the in-core memory hash.
$./fips-hash.sh

$ make # Re-build once the hash has been updated

This step is where the hash for the in-core memory test is calculated and will need to be updated. The
wolfCrypt test should fail when called by the fips-hash.sh script and if you were to echo out the output
the following message would be observed (NOTE the hash value will be unique):
in my Fips callback, ok = 0, err = -203

message = In Core Integrity check FIPS error

hash = 8D29242F610EAEA179605BB1A99974EBC72B0ECDB26B483B226A729F36FC82A2

In core integrity hash check failure, copy above hash

into verifyCore[] in fips_test.c and rebuild

Should you add other options to the build, this may change the hash value and this step will need to
be repeated. Also modifications to the application may result in the fips boundary shifting in memory
when the application is re-compiled. The hash changing when only the application is updated is not an
indication of the module being effected, only shifted in place in memory. This is expected if compiling
a static library and application. Shared objects tend to not experience this issue.
4.1 If one were to do the above without using the provided fips-hash.sh/span>script one could either
edit the file wolfcrypt/src/fips_test.c and update the hash manually or use a configure like so:

COPYRIGHT ©2024 wolfSSL Inc. 5

2.5 Test the build. 2 BUILDING WOLFSSL AS FIPS READY

$./configure --enable-fips=ready CFLAGS”=-DWOLFCRYPT_FIPS_CORE_HASH_VALUE=8
”D29242F610EAEA179605BB1A99974EBC72B0ECDB26B483B226A729F36FC82A2

4.2 Make the library again.

2.5 Test the build.
$ make check

The check target in the Makefile will run all the test tools and scripts we provide with wolfSSL and
wolfCrypt. If everything is OK, you should see the following output:
PASS: scripts/resume.test

PASS: scripts/external.test

PASS: scripts/google.test

PASS: testsuite/testsuite.test

PASS: scripts/openssl.test

PASS: tests/unit.test

===

Testsuite summary for wolfssl 4.0.0

===

TOTAL: 6

PASS: 6

SKIP: 0

XFAIL: 0

FAIL: 0

XPASS: 0

ERROR: 0

===

2.6 Install the library and headers.
$ make install

The install target in the Makefile will install all the headers and the library into your system By default,
this is into the directory /usr/local.
At this point, wolfSSL FIPS Ready should be ready to be used in your application builds.

COPYRIGHT ©2024 wolfSSL Inc. 6

3 WHAT HAS CHANGED FROM THE ORIGINAL FIPS 140-2 READY?

3 What has changed from the original FIPS 140-2 ready?

1. One now needs to call wc_SetSeed_Cb at the application level when running in FIPS mode.
a. +#ifdef WC_RNG_SEED_CB
b. • wc_SetSeed_Cb(wc_GenerateSeed);
c. +#endif
2. KEY Access Management
a. Users calling wolfSSL (SSL/TLS) APIs’ do not need to worry about the KEY Access Management

item, however for those calling crypto APIs please see next steps
b. Users invoking wolfcrypt (wc_XXX) APIs’ directly that involve loading or using a private key must

manage the key access at the application level. To be able to read in or use a private key the
application must allow this by calling PRIVATE_KEY_UNLOCK(); prior to reading a key or using a
key. When finished the applicationmust** lock the key access again before terminating by calling
PRIVATE_KEY_LOCK();

i. The PRIVATE_KEY_UNLOCK and PRIVATE_KEY_LOCK can optionally be invoked
only once on startup and once on shutdown …or

ii. If the application wishes to be very strict, these can be called
immediately before and after each call that involves a private key load
or use.

** “application must lock again before ”terminating - This is a
documentation requirement, this is not enforced at run-time by an error
or prevention from exiting. Failing to re-locking the key before exiting
makes the application “not FIPS ”compliant.

c. To support an application that can link to both a wolfSSL FIPS library version and a wolfSSL non-
FIPS library version users can implement NO-OP versions for the non-FIPS cases like so:

#if !defined(PRIVATE_KEY_LOCK) && !defined(PRIVATE_KEY_UNLOCK)
#define PRIVATE_KEY_LOCK() do {} while (0)
#define PRIVATE_KEY_UNLOCK() do {} while (0)

#endif

COPYRIGHT ©2024 wolfSSL Inc. 7

4 WOLFCRYPT FIPS READY API DOCUMENTATION

4 wolfCrypt FIPS Ready API Documentation

The following is a summary of the wolfCrypt FIPS Ready API. Please see the wolfCrypt API documenta-
tion for more detail.

4.1 Map of API to FIPS 140-3 module services
4.1.1 Digital Signature Service

API Call Description
InitRsaKey_fips Initializes RSA key object for use with optional heap

hint p. Returns 0 on success, < 0 on error.

FreeRsaKey_fips Releases RSA key resources. Returns 0 on success, <
0 on error.

RsaSSL_Sign_fips Performs RSA key Signing operation on input in of
size inLen, outputting to out of size outLen using
rng. Returns 0 on success, < 0 on error.

RsaSSL_VerifyInline_fips Performs RSA key Verification without allocating
temporary memory on input in of size inLen, writes
to output out. Returns 0 on success, < 0 on error.

RsaSSL_Verify_fips Performs RSA key Verification on input in of size
inLen, writes to output out of size outLen. Returns 0
on success, < 0 on error.

SS_Sign_fips Performs RSA key Signing operation with PSS
padding on input in of size inLen, outputting to out
of size outLen using rng. It uses the hash algorithm
hash with the mask generation function mgf.
Returns 0 on success, < 0 on error.

RsaPSS_SignEx_fips Performs RSA key Signing operation with PSS
padding on input in of size inLen, outputting to out
of size outLen using rng. It uses the hash algorithm
hash with the mask generation function mgf and a
salt length of saltLen. Returns 0 on success, < 0 on
error.

RsaPSS_VerifyInline_fips Performs RSA key Verification without allocating
temporary memory on input in of size inLen, writes
to output out. It uses the hash algorithm hash with
the mask generation function mgf. Returns 0 on
success, < 0 on error.

RsaPSS_VerifyInlineEx_fips Performs RSA key Verification on input in of size
inLen, writes to output out of size outLen. It uses
the hash algorithm hashwith the mask generation
function mgf and a salt length of saltLen. Returns 0
on success, < 0 on error.

COPYRIGHT ©2024 wolfSSL Inc. 8

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description

RsaPSS_Verify_fips Performs RSA key Verification on input in of size
inLen, writes to output out of size outLen. It uses
the hash algorithm hashwith the mask generation
function mgf. Returns 0 on success, < 0 on error.

RsaPSS_VerifyEx_fips Performs RSA key Verification on input in of size
inLen, writes to output out of size outLen. It uses
the hash algorithm hashwith the mask generation
function mgf and a salt length of saltLen. Returns 0
on success, < 0 on error.

RsaPSS_CheckPadding_fips Checks the padding after RSA key verification on
input in of size inSz with signature sig of size sigSz
using hash hashType. Returns 0 on success, < 0 on
error.

RsaPSS_CheckPaddingEx_fips Checks the padding after RSA key verification on
input in of size inSz with signature sig of size sigSz
using hash hashTypeand a salt length of saltLen.
Returns 0 on success, < 0 on error.

RsaEncryptSize_fips Retrieves RSA key Output Size. Returns key output
size > 0 on success, < 0 on error.

wc_RsaPrivateKeyDecode Decodes an Rsa Private key from a buffer input
starting at index inOutIdx of size inSz. Returns 0 on
success, < 0 on error.

wc_RsaPublicKeyDecode Decodes an Rsa Public key from a buffer input
starting at index inOutIdx of size inSz. Returns 0 on
success, < 0 on error.

ecc_init_fips Initializes ECC key object for use. Returns 0 on
success, < 0 on error.

ecc_free_fips Releases ECC key object resources. Returns 0 on
success, < 0 on error.

ecc_import_x963_fips Imports the ECC public key in ANSI X9.63 format
from in of size inLen. Returns 0 on success, < 0 on
error.

ecc_sign_hash_fips Performs ECC key Signing operation on in of length
inlen and output to out of length outlen using rng.
Returns 0 on success, < 0 on error.

ecc_verify_hash_fips Performs ECC key Verification of sig of size siglen,
with hash of length hashlen. The signature
verification result is returned in res. Returns 0 on
success, < 0 on error.

COPYRIGHT ©2024 wolfSSL Inc. 9

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description

4.1.2 Generate Key Pair Service

API Call Description
MakeRsaKey_fips Generates an RSA key with modulus length size and

exponent e using the random number generator
rng. Returns 0 on success, < 0 on error.

CheckProbablePrime_fips For a potential modulus of length nlen, check the
candidate numbers pRaw of size pRawSz and qRaw
of size qRawSz to see if they are probably prime.
They should both have a GCD with the exponent
eRaw of size eRawSz of 1. The prime candidates are
checked with Miller-Rabin. The result is written to
isPrime. Returns 0 on success, < 0 on error.

RsaExportKey_fips Exports the RSA key as its components e of eSz, n of
nSz, d of dSz, p of pSz, q of qSz. The sizes should be
the sizes of the buffers, and are updated to the
actual length of number. Returns 0 on success, < 0
on error.

ecc_make_key_fips Performs the ECC Key Generation operation on key
of size keysize using rng. Returns 0 on success, < 0
on error.

ecc_make_key_ex_fips Performs the ECC Key Generation operation on key
of size keysize with elliptic curve curve_id using rng.
Returns 0 on success, < 0 on error.

ecc_export_x963_fips Exports the ECC public key in ANSI X9.63 format to
out of size outLen. Returns 0 on success, < 0 on
error.

InitDhKey_fips Initializes DH key object for use. Returns 0 on
success, < 0 on error.

FreeDhKey_fips Releases DH key resources. Returns 0 on success, <
0 on error.

DhSetKeyEx_fips Sets the group parameters for the DH key from the
unsigned binary inputs p of size pSz, q of size qSz,
and g of size gSz. Returns 0 on success, < 0 on error.

DhGenerateKeyPair_fips Generates the public part pub of size pubSz, private
part priv of size privSz using rng for DH key. Returns
0 on success, < 0 on error.

COPYRIGHT ©2024 wolfSSL Inc. 10

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description
CheckRsaKey_fips Performs a pair-wise key validation on key. Returns

0 on success, < 0 on error.

ecc_check_key_fips Performs a pair-wise key validation on key. Returns
0 on success, < 0 on error.

DhCheckPubKeyEx_fips Performs a mathematical key validation on the pub
value of size pubSz using the domain parameters in
key or against the prime value of size primeSz.

DhCheckPrivKeyEx_fips Performs a mathematical key validation on the priv
value of size privSz using the domain parameters in
key or against the prime value of size primeSz.

DhCheckKeyPair_fips Performs a pair-wise key validation between the pub
value of size pubSz and the priv value of size privSz
using domain parameters key. Returns 0 on success,
< 0 on error.

HKDF_fips Performs HMAC based Key Derivation Function
using a hash of type and inKey of size inKeySz, with
a salt of length saltSz and info of infoSz. The key is
written to out of size outSz. Returns 0 on success, <
0 on error.

4.1.3 Key Agreement Service

API Call Description
ecc_shared_secret_fips Performs ECDHE Key Agreement operation with

privKey and the peer’s pubKey and storing the result
in sharedSecret of length sharedSz. Returns 0 on
success, < 0 on error.

DhAgree_fips Creates the agreement agree of size agreeSz using
DH keyprivate priv of size privSz and peer’s public
key otherPub of size pubSz. Returns 0 on success, <
0 on error.

4.1.4 Key Transport Service

API Call Description
RsaPublicEncrypt_fips Performs RSA key Public Encryption on input in of

size inLen, writes to output out of size outLen using
rng. Returns 0 on success, < 0 on error.

COPYRIGHT ©2024 wolfSSL Inc. 11

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description
RsaPublicEncryptEx_fips Performs RSA key Public Encryption on input in of

size inLen, writes to output out of size outLen using
rng. It uses padding of type. If using PSS padding, it
uses hash and mgf, with label of size labelSz.
Returns 0 on success, < 0 on error.

RsaPrivateDecryptInline_fips Performs RSA key Private Decryption without
allocating temporary memory on input in of size
inLen, writes to output out. Returns 0 on success, <
0 on error.

RsaPrivateDecryptInlineEx_fips Performs RSA key Private Decryption without
allocating temporary memory on input in of size
inLen, writes to output out. It uses padding of type.
If using PSS padding, it uses hashand mgf, with label
of size labelSz. Returns 0 on success, < 0 on error.

RsaPrivateDecrypt_fips Performs Rsa key Private Decryption on input in of
size inLen, writes to output out of size outLen.
Returns 0 on success, < 0 on error.

RsaPrivateDecryptEx_fips Performs Rsa key Private Decryption on input in of
size inLen, writes to output out of size outLen. It
uses padding of type. If using PSS padding, it uses
hash and mgf, with label of size labelSz. Returns 0
on success, < 0 on error.

4.1.5 Keyed Hash Service

API Call Description
HmacSetKey_fips Initializes hmac object with key of size keySz using

the hash type. Returns 0 on success, < 0 on error.

HmacUpdate_fips Performs hmac Update on input data of size len.
Returns 0 on success, < 0 on error.

HmacFinal_fips Performs hmac Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

Gmac_fips Performs GMAC on input authIn of size authInSz
and outputs authTag of size authTagSz. Uses key of
length keySz and randomly generates an IV of
length ivSz stored in iv using random number
generator rng. GMAC Returns 0 on success, < 0 on
error.

COPYRIGHT ©2024 wolfSSL Inc. 12

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description
GmacVerify_fips Verifies GMAC authTag of length authTagSz on input

authIn of size authInSz using the key of length keySz
and the iv of length ivSz. Returns 0 on success, < 0
on error.

InitCmac_fips Initializes cmac object with key of size keySz using
the hash type. Returns 0 on success, < 0 on error.

CmacUpdate_fips Performs cmac Update on input in of size inSz.
Returns 0 on success, < 0 on error.

CmacFinal_fips Performs cmac Final, outputs digest to out of size
outSz, which is updated with the actual output size.
Returns 0 on success, < 0 on error.

4.1.6 Message Digest Service

API Call Description
InitSha_fips Initializes sha object for use. Returns 0 on success, <

0 on error.

ShaUpdate_fips Performs sha Update on input data of size len.
Returns 0 on success, < 0 on error.

ShaFinal_fips Performs sha Final, outputs digest to hash. Returns
0 on success, < 0 on error.

InitSha224_fips Initializes sha224 object for use. Returns 0 on
success, < 0 on error.

Sha224Update_fips Performs sha224 Update on input data of size len.
Returns 0 on success, < 0 on error.

Sha224Final_fips Performs sha224 Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

InitSha256_fips Initializes sha256 object for use. Returns 0 on
success, < 0 on error.

Sha256Update_fips Performs sha256 Update on input data of size len.
Returns 0 on success, < 0 on error.

Sha256Final_fips Performs sha256 Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

InitSha384_fips Initializes sha384 object for use. Returns 0 on
success, < 0 on error.

COPYRIGHT ©2024 wolfSSL Inc. 13

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description
Sha384Update_fips Performs sha384 Update on input data of size len.

Returns 0 on success, < 0 on error.

Sha384Final_fips Performs sha384 Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

InitSha512_fips Initializes sha512 object for use. Returns 0 on
success, < 0 on error.

Sha512Update_fips Performs sha512 Update on input data of size len.
Returns 0 on success, < 0 on error.

Sha512Final_fips Performs sha512 Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

InitSha3_224_fips Initializes sha3 (224-bit) object for use. Returns 0 on
success, < 0 on error.

Sha3_224_Update_fips Performs sha3 (224-bit) Update on input data of size
len. Returns 0 on success, < 0 on error.

Sha3_224_Final_fips Performs sha3 (224-bit) Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

InitSha3_256_fips Initializes sha3 (256-bit) object for use. Returns 0 on
success, < 0 on error.

Sha3_256_Update_fips Performs sha3 (256-bit) Update on input data of size
len. Returns 0 on success, < 0 on error.

Sha3_256_Final_fips Performs sha3 (256-bit) Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

InitSha3_384_fips Initializes sha3 (384-bit) object for use. Returns 0 on
success, < 0 on error.

Sha3_384_Update_fips Performs sha3 (384-bit) Update on input data of size
len. Returns 0 on success, < 0 on error.

Sha3_384_Final_fips Performs sha3 (384-bit) Final, outputs digest to hash.
Returns 0 on success, < 0 on error.

InitSha3_512_fips Initializes sha3 (512-bit) object for use. Returns 0 on
success, < 0 on error.

Sha3_512_Update_fips Performs sha3 (512-bit) Update on input data of size
len. Returns 0 on success, < 0 on error.

Sha3_512_Update_fips Performs sha3 (512-bit) Update on input data of size
len. Returns 0 on success, < 0 on error.

COPYRIGHT ©2024 wolfSSL Inc. 14

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description
Sha3_512_Final_fips Performs sha3 (512-bit) Final, outputs digest to hash.

Returns 0 on success, < 0 on error.

4.1.7 Random (Number Generation) Service

API Call Description
InitRng_fips Initializes RNG object for use. Returns 0 on success,

< 0 on error.

InitRngNonce_fips Initializes RNG object for use with a nonce of size
nonceSz. Returns 0 on success, < 0 on error.

FreeRng_fips Releases RNG resources and zeros out state.
Returns 0 on success, < 0 on error. Also part of
Zeroize Service.

RNG_GenerateBlock_fips Retrieves block of RNG output for user into buf of
size in bytes bufSz. Returns 0 on success, < 0 on
error.

RNG_HealthTest_fips When reseed is 0, tests the output of a temporary
instance of an RNG against the expected output of
size in bytes outputSzusing the seed buffer
entropyA of size in bytes entropyASz, where
entropyB and entropyBSz are ignored. When reseed
is 1, the test also reseeds the temporary instance of
the RNG with the seed buffer entropyB of size in
bytes entropyBSz and then tests the RNG against
the expected output of size in bytes outputSz.
Returns 0 on success, < 0 on error.

4.1.8 Show Status Service

API Call Description
wolfCrypt_GetStatus_fips Returns the current status of the module. A return

code of 0 means the module is in a state without
errors. Any other return code is the specific error
state of the module.

wolfCrypt_GetVersion_fips Returns a pointer to the null-terminated char string
of the wolfCrypt library version.

wolfCrypt_GetCoreHash_fips Returns a pointer to the null-terminated char string
of the core hash in hex.

COPYRIGHT ©2024 wolfSSL Inc. 15

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

4.1.9 Symmetric Cipher Service

API Call Description
AesSetKey_fips Initializes aes object with userKey of length keylen,

dir indicates the direction while iv is optional.
Returns 0 on success, < 0 on error.

AesSetIV_fips Initializes aes object with user iv. Returns 0 on
success, < 0 on error.

AesCbcEncrypt_fips Performs aes CBC Encryption on input in to output
out of size sz. Returns 0 on success, < 0 on error.

AesCbcDecrypt_fips Performs aes CBC Decryption on input in to output
out of size sz. Returns 0 on success, < 0 on error.

AesEcbEncrypt_fips Performs aes ECB Encrypt on input in to output out
of size sz. Returns 0 on success, < 0 on error.

AesEcbDecrypt_fips Performs aes ECB Encryption on input in to output
out of size sz. Returns 0 on success, < 0 on error.

AesCtrEncrypt_fips Performs aes CTR Encryption on input in to output
out of size sz. Returns 0 on success, < 0 on error.
This API also performs CTR Decryption.

AesGcmSetKey_fips Initializes aes object with key of length len. Returns
0 on success, < 0 on error.

AesGcmSetExtIV_fips Initializes aes object with an externally generated iv
of length ivSz. Returns 0 on success, < 0 on error.

AesGcmSetIV_fips Initializes aes object with an internally generated IV
of length ivSz using ivFixed as the first ivFixedSz
bytes and the remainder being random bytes from
rng. Returns 0 on success, < 0 on error.

AesGcmEncrypt_fips Performs aes GCM Encryption on input in to output
out of size sz. The current IV is stored in buffer ivOut
of length ivOutSz. The authentication tag is stored
in buffer authTag of size authTagSz. authInSz bytes
from authIn are calculated into the authentication
tag. Returns 0 on success, < 0 on error.

AesGcmDecrypt_fips Performs aes GCM Decryption on input in to output
out of size sz using iv of size ivSz. The authTag of
size authTagSz is checked using the input and the
authInSz bytes of authIn. Returns 0 on success, < 0
on error.

AesCcmSetKey_fips Initializes aes object with key of length keySz.
Returns 0 on success, < 0 on error.

COPYRIGHT ©2024 wolfSSL Inc. 16

4.1 Map of API to FIPS 140-3 module services 4 WOLFCRYPT FIPS READY API DOCUMENTATION

API Call Description
AesCcmSetNonce_fips Initializes aes object with an externally generated

nonce of length nonceSz. Returns 0 on success, < 0
on error.

AesCcmEncrypt_fips Performs aes CCM Encryption on input in to output
out of size inSz. The current IV is stored in buffer
nonce of length nonceSz. The authentication tag is
stored in buffer authTag of size authTagSz. authInSz
bytes from authIn are calculated into the
authentication tag. Returns 0 on success, < 0 on
error.

AesCcmDecrypt_fips Performs aes CCM Decryption on input in to output
out of size inSz using nonce of size nonceSz. The
authTag of size authTagSz is checked using the input
and the authInSz bytes of authIn. Returns 0 on
success, < 0 on error.

Des3_SetIV_fips Initializes des3 object with User iv. Returns 0 on
success, < 0 on error.

Des3_CbcEncrypt_fips Performs des3 Cbc Encryption on input in to output
out of size sz. Returns 0 on success, < 0 on error.

Des3_CbcDecrypt_fips Performs des3 Cbc Decryption on input in to output
out of size sz. Returns 0 on success, < 0 on error.

4.1.10 Zeroize Service

API Call Description
FreeRng_fips Destroys RNG CSPs. All other services automatically

overwrite memory bound CSPs. Returns 0 on
success, < 0 on error.

Cleanup of the stack is the duty of the application.
Restarting the general-purpose computer clears all
CSPs in RAM.

API Calls for Allowed Security Functions

COPYRIGHT ©2024 wolfSSL Inc. 17

	wolfSSL FIPS Ready
	What is Different from a non-FIPS build of wolfSSL?

	Building wolfSSL as FIPS Ready
	Unarchive the source
	Configure the build.
	Make the library.
	Update the in-core memory hash.
	Test the build.
	Install the library and headers.

	What has changed from the original FIPS 140-2 ready?
	wolfCrypt FIPS Ready API Documentation
	Map of API to FIPS 140-3 module services
	Digital Signature Service
	Generate Key Pair Service
	Key Agreement Service
	Key Transport Service
	Keyed Hash Service
	Message Digest Service
	Random (Number Generation) Service
	Show Status Service
	Symmetric Cipher Service
	Zeroize Service

