

wolfMQTT User Manual
May 25, 2018

Version ​1.0

Table of Contents

Chapter 1: Introduction
1.1 Protocol Overview

Chapter 2: Building wolfMQTT
2.1 Getting the Source Code
2.2 Building on *nix
2.3 Building on Windows
2.4 Building on Other Systems
2.5 Building in a non-standard environment
2.6 Cross Compiling
2.7 Install to Custom Directory

Chapter 3 : Getting Started
3.1 Client Example
3.2 Firmware Update Example
3.3 Azure IoT Hub Example
3.4 AWS IoT Example
3.4 Watson IoT Example

Chapter 4: Library Design
1. mqtt_client
2. mqtt_packet
3. mqtt_socket

4.1 Example Design

Chapter 5: API Reference
5.1 MqttPacketResponseCodes (enum)
5.2 MqttClient_Init
5.3 MqttClient_Connect
5.4 MqttClient_Publish
5.5 MqttClient_Subscribe

Copyright 2018 wolfSSL Inc. All rights reserved.

1

5.6 MqttClient_Unsubscribe
5.7 MqttClient_Ping
5.8 MqttClient_Disconnect
5.9 MqttClient_WaitMessage
5.10 MqttClient_NetConnect
5.11 MqttClient_NetDisconnect
5.12 MqttClient_ReturnCodeToString
5.13 MqttClient_SetDisconnectCallback

Copyright 2018 wolfSSL Inc. All rights reserved.

2

Chapter 1: Introduction

This is an implementation of the MQTT (Message Queuing Telemetry Transport) Client
written in C. This library was built from the ground up to be multi-platform, space
conscience and extensible. It supports all Packet Types, all Quality of Service (QoS)
levels 0-2 and supports SSL/TLS using the wolfSSL library. This implementation is
based on the MQTT v3.1.1 specification.

1.1 Protocol Overview

MQTT is a lightweight open messaging protocol that was developed for constrained
environments such as M2M (Machine to Machine) and IoT (Internet of Things), where a
small code footprint is required. MQTT is based on the Pub/Sub messaging principle of
publishing messages and subscribing to topics. The protocol efficiently packs messages
to keep the overhead very low. The MQTT specification recommends TLS as a
transport option to secure the protocol using port 8883 (secure-mqtt). Constrained
devices can benefit from using TLS session resumption to reduce the reconnection
cost.

MQTT defines QoS levels 0-2 to specify the delivery integrity required:
0 = At most once delivery: No acknowledgment.
1 = At least once delivery: Sends acknowledgment (​PUBLISH_ACK​).
2 = Exactly once delivery: Sends received (​PUBLISH_REC​), gets back released
(​PUBLISH_REL​) and then sends complete (​PUBLISH_COMP​).

Highlights​:

• A publish message payload can be up to 256MB (28 bits).
• Packet header remaining length is encoded using a scheme where the most

significant bit (7) indicates an additional length byte.
• Packets which require a response must include a 16-bit packet Id. This needs to

be unique for any outstanding transactions. Typically an incremented value.
• A client can provide a last will and testament upon connect, which will be

delivered when the broker sees the client has disconnected or network
keep-alive has expired.

Copyright 2018 wolfSSL Inc. All rights reserved.

3

• The packet types are: ​CONNECT​, ​CONNECT_ACK​, ​PUBLISH​, ​PUBLISH_ACK​,
PUBLISH_REC​, ​PUBLISH_REL​, ​PUBLISH_COMP​, ​SUBSCRIBE​, ​SUBSCRIBE_ACK​,
UNSUBSCRIBE​, ​UNSUBSCRIBE_ACK​, ​PING_REQ​, ​PING_RESP​ and ​DISCONNECT​.

• The connect packet contains the ASCII string “MQTT” to define the protocol
name. This can be useful for wireshark/sniffing.

• Multiple topics can be subscribed or unsubscribed in the same packet request.
• Each subscription topic must define a QoS level. The QoS level is confirmed in

the subscription acknowledgment.
• A publish message can be sent or received by either the client or the broker.
• Publish messages can be flagged for retention on the broker.
• A QoS level 2 requires two round-trips to complete the delivery exchange

confirmation.
• Strings are UTF-8 encoded.

See ​http://mqtt.org/documentation​ for additional MQTT documentation.

Copyright 2018 wolfSSL Inc. All rights reserved.

4

http://mqtt.org/documentation

Chapter 2: Building wolfMQTT

wolfMQTT was written with portability in mind, and should generally be easy to build on
most systems. If you have difficulty building, please don’t hesitate to seek support
through our ​support forums​ ​(http://www.wolfssl.com/forums)​ or contact us directly at
support@wolfssl.com​.

This chapter explains how to build wolfMQTT on Unix and Windows, and provides
guidance for building in a non-standard environment. You will find a getting started
guide and example client in ​Chapter 3​.

When using the autoconf / automake system to build, wolfMQTT uses a single Makefile
to build all parts and examples of the library, which is both simpler and faster than using
Makefiles recursively.

If using the TLS features or the Firmware/Azure IoT Hub examples you’ll need to have
wolfSSL installed. For wolfSSL and wolfMQTT we recommend using config options
./configure --​enable​-ecc --​enable​-supportedcurves --​enable​-base64encode​. For
wolfSSL use ​m​ake && sudo make install​. If you get an error locating the libwolfssl.so
run ​sudo ldconfig​ from the wolfSSL directory.

2.1 Getting the Source Code

The most recent version can be downloaded from the GitHub website here:
https://github.com/wolfSSL/wolfMQTT

Either click the “Download ZIP” button or use the command:

git ​clone​ https://github.com/wolfSSL/wolfMQTT.git

2.2 Building on *nix

Copyright 2018 wolfSSL Inc. All rights reserved.

5

https://github.com/wolfSSL/wolfMQTT

When building on Linux, *BSD, OS X, Solaris, or other *nix-like systems, use the
autoconf system. If cloned from github run the following three commands:
./autogen.sh

./configure

make

Otherwise, just run these two commands:
./configure

make

You can append any number of build options to ./configure. For a list of available build
options run:
./configure --​help

From the command line to see a list of possible options to pass to the ./configure script.
To build wolfMQTT, run:
make

To install wolfMQTT run:
make install

You may need superuser privileges to install, in which case precede the command with
sudo:
sudo make install

To test the build, run the ​mqttclient​ program from the root wolfMQTT source directory:
./examples/mqttclient/mqttclient

If you want to build only the wolfMQTT library and not the additional items (examples),
you can run the following command from the wolfMQTT root directory:
make src/libwolfmqtt.la

Copyright 2018 wolfSSL Inc. All rights reserved.

6

2.3 Building on Windows

Visual Studio 2015​:

1. Open the ​wolfssl-root>/wolfssl64.sln​.
2. Re-target for your Visual Studio version (right-click on solution and choose

“​Retarget solution”​).
3. Make sure the​ Debug DLL or Release DLL co​nfiguration is selected. Make note if

you are building 32-bit x86 or 64-bit x64​.
4. Build the wolfSSL solution.
5. Copy the ​wolfssl.lib​ and ​wolfssl.dll​ files into ​<wolfmqtt-root>​.

○ For​ DLL Debug with​ ​x86​ the files are in: ​DLL Debug​.
○ Fo​r DLL Release w​ith ​x86​ the files are in: ​DLL Release​.
○ Fo​r DL​L Debug with x​64​ the files are in: ​x64/DLL Debug​.
○ Fo​r ​DLL Release wit​h ​x64​ the files are in: ​x64/DLL Release​.

6. Open the ​<wolfmqtt-root>/wolfmqtt.sln​ solution.
7. Make sure you have the same architectur​e (x86 or x64 ​selected) as used in

wolfSSL above.
8. By default the include path for the wolfssl headers is ​./../wolfssl/​. If your

wolfssl root location is different you can go into the project settings and adjust
this in ​C/C++ -> General -> Additional Include Directories​.

9. Build the wolfMQTT solution.

The wolfmqtt.sln solution is included for Visual Studio 2015 in the root directory of the
install.

To test each build, choose “Build All” from the Visual Studio menu and then run the
mqttclient program. To edit build options in the Visual Studio project, select your
desired project (wolfmqtt, mqttclient) and browse to the “Properties” panel.

For instructions on building the required wolfssl.dll see
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-visual-studio.html​. When done copy the
wolfssl.dll​ and ​wolfssl.lib​ into the wolfMQTT root. The project also assumes the
wolfSSL headers are located ​../wolfssl/​.

Cygwin​: If using Cygwin, or other toolsets for Windows that provides *nix-like
commands and functionality, please follow the instructions in ​Section 2.2​, above, for

Copyright 2018 wolfSSL Inc. All rights reserved.

7

https://www.wolfssl.com/wolfSSL/Docs-wolfssl-visual-studio.html

“Building on *nix”. If building wolfMQTT for Windows on a Windows development
machine, we recommend using the included Visual Studio project files to build
wolfMQTT.

2.4 Building on Other Systems

Arduino: See ​README.md​ a​t​ ​wolfMQTT​/​IDE/ARDUINO/
Microchip Harmony: See ​README.md​ a​t​ ​wolfMQTT/IDE/Microchip-Harmony/

2.5 Building in a non-standard environment

While not officially supported, we try to help users wishing to build wolfMQTT in a
non-standard environment, particularly with embedded and cross-compilation systems.
Below are some notes on getting started with this.

1. The source and header files need to remain in the same directory structure as
they are in the wolfMQTT download package.

2. Some build systems will want to explicitly know where the wolfMQTT header files

are located, so you may need to specify that. They are located in the
<wolfmqtt_root>/wolfmqtt​ directory. Typically, you can add the
<wolfmqtt_root>​ directory to your include path to resolve header problems.

3. wolfMQTT defaults to a little endian system unless the configure process detects

big endian. Since users building in a non-standard environment aren't using the
configure process, ​BIG_ENDIAN_ORDER​ will need to be defined if using a big
endian system.

4. Try to build the library, and let us know if you run into any problems. If you need

help, contact us at ​support@wolfssl.com​.

2.6 Cross Compiling

Copyright 2018 wolfSSL Inc. All rights reserved.

8

https://github.com/wolfSSL/wolfMQTT/tree/master/IDE/ARDUINO
https://github.com/wolfSSL/wolfMQTT/tree/master/IDE/ARDUINO
https://github.com/wolfSSL/wolfMQTT/tree/master/IDE/ARDUINO
https://github.com/wolfSSL/wolfMQTT/tree/master/IDE/Microchip-Harmony
mailto:support@wolfssl.com

Many users on embedded platforms cross compile for their environment. The easiest
way to cross compile the library is to use the ./configure system. It will generate a
Makefile which can then be used to build wolfMQTT.

When cross compiling, you’ll need to specify the host to ./configure, such as:

./configure ​--host=arm-linux

You may also need to specify the compiler, linker, etc. that you want to use:

./configure --host=arm-linux CC=arm-linux-gcc AR=arm-linux-ar RANLIB=arm-linux

After correctly configuring wolfMQTT for cross-compilation, you should be able to follow
standard autoconf practices for building and installing the library:

make

sudo make install

If you have any additional tips or feedback about cross compiling wolfMQTT, please let
us know at ​info@wolfssl.com​.

2.7 Install to Custom Directory

To setup a custom install directory for wolfSSL use the following:

In wolfSSL:
./configure --prefix=~/wolfssl

make

make install

This will place the libs in ​~/wolfssl/lib​ and includes in ​~/wolfssl/include

To setup a custom install directory for wolfMQTT and specify custom wolfSSL
lib/include directories use the following:

Copyright 2018 wolfSSL Inc. All rights reserved.

9

mailto:info@wolfssl.com

In wolfMQTT:
./configure --prefix=~/wolfmqtt --libdir=~/wolfssl/lib \

--includedir=~/wolfssl/include

make

make install

Make sure the paths above match your actual location.

Copyright 2018 wolfSSL Inc. All rights reserved.

10

Chapter 3 : Getting Started

Here are the steps for creating your own implementation:

1. Create network callback functions for Connect, Read, Write and Disconnect. See
examples/mqttnet.c​ and ​examples/mqttnet.h​ for reference implementation.

2. Define the network callback functions and context in a ​MqttNet​ structure.
3. Call ​MqttClient_Init​ passing in a ​MqttClient​ structure pointer, ​MqttNet

structure pointer, ​MqttMsgCb​ function callback pointer, TX/RX buffers with
maximum length and command timeout.

4. Call ​MqttClient_NetConnect​ to connect to broker over network. If ​use_tls​ is
non-zero value then it will perform a TLS connection. The TLS callback
MqttTlsCb​ should be defined for WolfSSL certificate configuration.

5. Call ​MqttClient_Connect​ passing pointer to ​MqttConnect​ structure to send
MQTT connect command and wait for Connect Ack.

6. Call ​MqttClient_Subscribe​ passing pointer to ​MqttSubscribe​ structure to
send MQTT Subscribe command and wait for Subscribe Ack (depending on QoS
level).

7. Call ​MqttClient_WaitMessage​ passing pointer to ​MqttMessage​ to wait for
incoming MQTT Publish message.

3.1 Client Example

The example MQTT client is located in ​/examples/mqttclient/​. This example exercises
all exposed API’s and prints any incoming publish messages for subscription topic:
wolfMQTT/example/testTopic​.

Usage
./examples/mqttclient/mqttclient -?

mqttclient:

-? Help, print this usage

-h <host> Host to connect to, default iot.eclipse.org

-p <num> Port to connect on, default: Normal 1883, TLS 8883

-t Enable TLS

-c <file> Use provided certificate file

-q <num> Qos Level 0-2, default 0

Copyright 2018 wolfSSL Inc. All rights reserved.

11

-s Disable clean session connect flag

-k <num> Keep alive seconds, default 60

-i <id> Client Id, default WolfMQTTClient

-l Enable LWT (Last Will and Testament)

-u <str> Username

-w <str> Password

-n <str> Topic name, default wolfMQTT/example/testTopic

-r Set Retain flag on publish message

-C <num> Command Timeout, default 30000ms

-T Test mode

Output (no TLS):

./examples/mqttclient/mqttclient

MQTT Client: QoS 0

MQTT Net Init: Success (0)

MQTT Init: Success (0)

MQTT Socket Connect: Success (0)

MQTT Connect: Success (0)

MQTT Connect Ack: Return Code 0, Session Present 0

MQTT Subscribe: Success (0)

 Topic wolfMQTT/example/testTopic, Qos 0, Return Code 0

MQTT Publish: Topic wolfMQTT/example/testTopic, Success (0)

MQTT Waiting for message...

MQTT Message: Topic wolfMQTT/example/testTopic, Qos 0, Len 4

Payload (0 - 4): test

MQTT Message: Done

asdf

MQTT Publish: Topic wolfMQTT/example/testTopic, Success (0)

MQTT Message: Topic wolfMQTT/example/testTopic, Qos 0, Len 1

Payload (0 - 1): asdf

MQTT Message: Done

^CReceived SIGINT

MQTT Unsubscribe: Success (0)

MQTT Disconnect: Success (0)

MQTT Socket Disconnect: Success (0)

Output (with TLS - peer has self signed cert)

./examples/mqttclient/mqttclient -t

MQTT Client: QoS 0

MQTT Net Init: Success (0)

Copyright 2018 wolfSSL Inc. All rights reserved.

12

MQTT Init: Success (0)

MQTT TLS Setup (1)

MQTT TLS Verify Callback:

 PreVerify 0, Error -188 (ASN no signer error to confirm failure)

 Subject's domain name is iot.eclipse.org

 Allowing cert anyways

MQTT Socket Connect: Success (0)

MQTT Connect: Success (0)

MQTT Connect Ack: Return Code 0, Session Present 0

MQTT Subscribe: Success (0)

 Topic wolfMQTT/example/testTopic, Qos 0, Return Code 0

MQTT Publish: Topic wolfMQTT/example/testTopic, Success (0)

MQTT Waiting for message...

MQTT Message: Topic wolfMQTT/example/testTopic, Qos 0, Len 4

Payload (0 - 4): test

MQTT Message: Done

asdf

MQTT Publish: Topic wolfMQTT/example/testTopic, Success (0)

MQTT Message: Topic wolfMQTT/example/testTopic, Qos 0, Len 1

Payload (0 - 1): asdf

MQTT Message: Done

^CReceived SIGINT

MQTT Unsubscribe: Success (0)

MQTT Disconnect: Success (0)

MQTT Socket Disconnect: Success (0)

3.2 Firmware Update Example

The MQTT firmware update is located in ​/examples/firmware/​. This example has two
parts. The first is called ​fwpush​, which publishes a signed firmware image. The second
is called ​fwclient​, which receives the firmware image and verifies the signature. This
example publishes message on the topic ​wolfMQTT/example/firmware​.

Usage
./examples/firmware/fwpush -?

fwpush:

-? Help, print this usage

-h <host> Host to connect to, default iot.eclipse.org

-p <num> Port to connect on, default: Normal 1883, TLS 8883

-t Enable TLS

-c <file> Use provided certificate file

-q <num> Qos Level 0-2, default 0

Copyright 2018 wolfSSL Inc. All rights reserved.

13

-s Disable clean session connect flag

-k <num> Keep alive seconds, default 60

-i <id> Client Id, default WolfMQTTFwPush

-l Enable LWT (Last Will and Testament)

-u <str> Username

-w <str> Password

-n <str> Topic name, default wolfMQTT/example/firmware

-r Set Retain flag on firmware publish message

-C <num> Command Timeout, default 30000ms

-T Test mode

-f <file> Use file for publish, default README.md

fwpush output:
./examples/firmware/fwpush -t -f README.md

MQTT Firmware Push Client: QoS 2

Firmware Message: Sig 74 bytes, Key 65 bytes, File 4271 bytes

MQTT Net Init: Success (0)

MQTT Init: Success (0)

MQTT TLS Setup (1)

MQTT TLS Verify Callback: PreVerify 0,

 Error -188 (ASN no signer error to confirm failure)

 Subject's domain name is iot.eclipse.org

 Allowing cert anyways

MQTT Socket Connect: Success (0)

MQTT Connect: Success (0)

MQTT Connect Ack: Return Code 0, Session Present 0

MQTT Publish: Topic wolfMQTT/example/firmware, Success (0)

MQTT Disconnect: Success (0)

MQTT Socket Disconnect: Success (0)

MQTT Net DeInit: Success (0)

fwclient output:
./examples/firmware/fwclient -t -f README.md

MQTT Firmware Client: QoS 2

MQTT Net Init: Success (0)

MQTT Init: Success (0)

MQTT TLS Setup (1)

MQTT TLS Verify Callback: PreVerify 0,

 Error -188 (ASN no signer error to confirm failure)

 Subject's domain name is iot.eclipse.org

 Allowing cert anyways

MQTT Socket Connect: Success (0)

MQTT Connect: Success (0)

MQTT Connect Ack: Return Code 0, Session Present 0

Copyright 2018 wolfSSL Inc. All rights reserved.

14

MQTT Subscribe: Success (0)

 Topic wolfMQTT/example/firmware, Qos 2, Return Code 2

MQTT Waiting for message...

MQTT Firmware Message: Qos 2, Len 4415

Firmware Signature Verification: Pass (0)

Saved 4271 bytes to README.md

^CReceived SIGINT

MqttSocket_NetRead: Error 0

MQTT Message Wait: Error (Network) (-8)

MQTT Disconnect: Success (0)

MQTT Socket Disconnect: Success (0)

MQTT Net DeInit: Success (0)

3.3 Azure IoT Hub Example

We setup a wolfMQTT IoT Hub on the Azure server for testing. We added a device
called ​demoDevice​, which you can connect and publish to. The example demonstrates
creation of a ​SasToken​, which is used as the password for the MQTT connect packet. It
also shows the topic names for publishing events and listening to ​devicebound
messages. This example only works with ​ENABLE_MQTT_TLS​ set and the wolfSSL library
present because it requires Base64 Encode/Decode and HMAC-SHA256.

Note​: The wolfSSL library must be built with ​./configure --​enable​-base64encode​ or
#define WOLFSSL_BASE64_EN​CODE​. The ​wc_GetTime​ API was added in 3.9.1 and if not
present you'll need to implement your own version of this to get current UTC seconds or
update your wolfSSL library.

Usage
./examples/azure/azureiothub -?

azureiothub:

-? Help, print this usage

-h <host> Host to connect to, default wolfMQTT.azure-devices.net

-p <num> Port to connect on, default: Normal 1883, TLS 8883

-t Enable TLS

-c <file> Use provided certificate file

-q <num> Qos Level 0-2, default 1

-s Disable clean session connect flag

-k <num> Keep alive seconds, default 60

-i <id> Client Id, default demoDevice

-l Enable LWT (Last Will and Testament)

Copyright 2018 wolfSSL Inc. All rights reserved.

15

-u <str> Username

-w <str> Password

-n <str> Topic name, default devices/demoDevice/messages/devicebound/#

-r Set Retain flag on publish message

-C <num> Command Timeout, default 30000ms

-T Test mode

azureiothub output:
./examples/azure/azureiothub

AzureIoTHub Client: QoS 1, Use TLS 1

MQTT Net Init: Success (0)

SharedAccessSignature

sr=wolfMQTT.azure-devices.net%2fdevices%2fdemoDevice&sig=iy8al9ZPBLLZdMT38SIGy8Qx7k

5jY%2f5nTpBo8Mw84PA%3d&se=1482274308

MQTT Init: Success (0)

MQTT TLS Setup (1)

MQTT TLS Verify Callback: PreVerify 0, Error -188 (ASN no signer error to confirm

failure)

 Subject's domain name is *.azure-devices.net

 Allowing cert anyways

MQTT Socket Connect: Success (0)

MQTT Connect: Success (0)

MQTT Connect Ack: Return Code 0, Session Present 0

MQTT Subscribe: Success (0)

 Topic devices/demoDevice/messages/devicebound/#, Qos 1, Return Code 1

MQTT Publish: Topic devices/demoDevice/messages/events/, Success (0)

MQTT Waiting for message...

^CReceived SIGINT

MQTT Exiting...

MQTT Disconnect: Success (0)

MQTT Socket Disconnect: Success (0)

3.4 AWS IoT Example

We setup an AWS IoT endpoint and testing device certificate for testing. The AWS
server uses TLS client certificate for authentication. The example is located in
/examples/aws/. The example subscribes to
$aws​/things/​"AWSIOT_DEVICE_ID"​/shadow/update/delta​ and publishes to
$aws​/things/​"AWSIOT_DEVICE_ID"​/shadow/update​. The AWS IoT broker requires TLS
and only supports QoS levels 0-1.

Copyright 2018 wolfSSL Inc. All rights reserved.

16

Usage
./examples/aws/awsiot -?

awsiot:

-? Help, print this usage

-h <host> Host to connect to, default a2dujmi05ideo2.iot.us-west-2.amazonaws.com

-p <num> Port to connect on, default: Normal 1883, TLS 8883

-t Enable TLS

-c <file> Use provided certificate file

-q <num> Qos Level 0-2, default 1

-s Disable clean session connect flag

-k <num> Keep alive seconds, default 60

-i <id> Client Id, default demoDevice

-l Enable LWT (Last Will and Testament)

-u <str> Username

-w <str> Password

-n <str> Topic name, default $aws/things/demoDevice/shadow/update/delta

-r Set Retain flag on publish message

-C <num> Command Timeout, default 30000ms

-T Test mode

awsiot output:
./examples/aws/awsiot

AwsIoT Client: QoS 1, Use TLS 1

MQTT Net Init: Success (0)

MQTT Init: Success (0)

MQTT TLS Setup (1)

MQTT Socket Connect: Success (0)

MQTT Connect: Success (0)

MQTT Connect Ack: Return Code 0, Session Present 0

MQTT Subscribe: Success (0)

 Topic $aws/things/demoDevice/shadow/update/delta, Qos 1, Return Code 1

MQTT Publish: Topic $aws/things/demoDevice/shadow/update, Success (0)

MQTT Waiting for message...

^CReceived SIGINT

MQTT Exiting...

MQTT Disconnect: Success (0)

MQTT Socket Disconnect: Success (0)

Copyright 2018 wolfSSL Inc. All rights reserved.

17

3.4 Watson IoT Example

This example enables the wolfMQTT client to connect to the IBM Watson Internet of
Things (WIOT) Platform. The WIOT Platform has a limited test broker called "Quickstart"
that allows non-secure connections to exercise the component.

Usage
./examples/wiot/wiot

awsiot output:
./examples/wiot/wiot

MQTT Client: QoS 0, Use TLS 0

MQTT Net Init: Success (0)

MQTT Init: Success (0)

MQTT Socket Connect: Success (0)

MQTT Connect: Success (0)

MQTT Connect Ack: Return Code 0, Session Present 0

To view the published sample data visit:

https://quickstart.internetofthings.ibmcloud.com/#/device/wolftestid/sensor/

MQTT Subscribe: Success (0)

 Topic iot-2/type/wolfMQTT/id/wolftestid/evt/sensor/fmt/json, Qos 0, Return Code 0

MQTT Publish: Topic iot-2/type/wolfMQTT/id/wolftestid/evt/sensor/fmt/json, Success

(0)

MQTT Waiting for message...

MQTT Message: Topic iot-2/type/wolfMQTT/id/wolftestid/evt/sensor/fmt/json, Qos 0,

Len 12

Payload (0 - 12): {"sensor":1}

MQTT Message: Done

^CReceived SIGINT

Disconnect (error -8)

MQTT Exiting...

MQTT Unsubscribe: Success (0)

MQTT Disconnect: Success (0)

MQTT Socket Disconnect: Success (0)

Copyright 2018 wolfSSL Inc. All rights reserved.

18

Chapter 4: Library Design

Library header files are located in the /wolfmqtt directory. Only the
/wolfmqtt/mqtt_client.h​ header is required to be included:

#include <wolfmqtt/mqtt_client.h>

The library has three components:

1. mqtt_client

This is where the top level application interfaces for the MQTT client reside. If the API
performs a network write it will block on a network read if an acknowledgment is
expected.

int MqttClient_Init(MqttClient *client, MqttNet *net, MqttMsgCb msg_cb, byte

*tx_buf, int tx_buf_len, byte *rx_buf, int rx_buf_len, int

cmd_timeout_ms);

These API's are blocking on ​MqttNet.read​ until error/timeout (​cmd_timeout_ms​):

• int MqttClient_Connect(MqttClient *client, MqttConnect *connect);

• int MqttClient_Publish(MqttClient *client, MqttPublish *publish);

• int MqttClient_Subscribe(MqttClient *client, MqttSubscribe *subscribe);

• int MqttClient_Unsubscribe(MqttClient *client, MqttUnsubscribe

*unsubscribe);

• int MqttClient_Ping(MqttClient *client);

• int MqttClient_Disconnect(MqttClient *client);

This function blocks waiting for a new publish message to arrive for a maximum
duration of ​timeout_ms​.

• int MqttClient_WaitMessage(MqttClient *client, MqttMessage *message,

int timeout_ms);

These are the network connect / disconnect interfaces that wrap the MqttNet callbacks
and handle WolfSSL TLS:

Copyright 2018 wolfSSL Inc. All rights reserved.

19

• int MqttClient_NetConnect(MqttClient *client, const char* host, word16

port, int timeout_ms, int use_tls, MqttTlsCb cb);

• int MqttClient_NetDisconnect(MqttClient *client);

Helper functions:

• const char* MqttClient_ReturnCodeToString(int return_code);

For additional information see ​Chapter 5​ for API reference

2. mqtt_packet

This is where all the packet encoding/decoding is handled. This contains the MQTT
Packet structures for:

• Connect: ​MqttConnect
• Publish / Message: ​MqttPublish​ / ​MqttMessage​ (they are the same)
• Subscribe: ​MqttSubscribe
• Unsubscribe: ​MqttUnsubscribe

3. mqtt_socket

This is where the transport socket optionally wraps TLS and uses the ​MqttNet​ callbacks
for the platform specific network handling. The header contains the MQTT Network
structure ​MqttNet​ for network callback and context.

4.1 Example Design

The examples use a common ​examples/mqttnet.c​ to handle the network callbacks on
the clients. This reference supports Linux (BSD sockets), FreeRTOS/LWIP, MQX
RTCS, Harmony and Windows.

Copyright 2018 wolfSSL Inc. All rights reserved.

20

Chapter 5: API Reference

This describes the public application interfaces for the wolfMQTT library.

5.1 MqttPacketResponseCodes (enum)

These are the API response codes:

MQTT_CODE_SUCCESS = 0: Success

MQTT_CODE_ERROR_BAD_ARG = -1: Invalid argument provided

MQTT_CODE_ERROR_OUT_OF_BUFFER = -2: Rx or Tx buffer out of space

MQTT_CODE_ERROR_MALFORMED_DATA = -3: Malformed packet remaining length

MQTT_CODE_ERROR_PACKET_TYPE = -4: Invalid packet type in header

MQTT_CODE_ERROR_PACKET_ID = -5: Packet Id mismatch

MQTT_CODE_ERROR_TLS_CONNECT = -6: TLS connect error.

MQTT_CODE_ERROR_TIMEOUT = -7: Net read/write/connect timeout

MQTT_CODE_ERROR_NETWORK = -8: Network error

MQTT_CODE_ERROR_MEMORY = -9: Memory error

MQTT_CODE_ERROR_STAT = -10: State error

MQTT_CODE_CONTINUE = -101: Non-blocking mode, perform IO and call again.

MQTT_CODE_STDIN_WAKE = -102: Normal blocking mode only, used in the examples

to accept input from the terminal

5.2 MqttClient_Init

Synopsis:
#include <wolfmqtt/mqtt_client.h>

typedef int (*MqttMsgCb)(struct _MqttClient *client, MqttMessage

*message, byte msg_new, byte msg_done);

int MqttClient_Init(

MqttClient *client,

MqttNet *net,

Copyright 2018 wolfSSL Inc. All rights reserved.

21

MqttMsgCb msg_cb,

byte *tx_buf, int tx_buf_len,

byte *rx_buf, int rx_buf_len,

int cmd_timeout_ms);

Description:
Initializes the wolfMQTT library for use. Must be called once per application and before
any other calls to the library.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_ERROR_BAD_ARG​ - Invalid argument provided
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to MqttClient structure (okay if not initialized).
net​ - Pointer to MqttNet structure populated with network callbacks and context.
msg_cb​ - Pointer to MqttMsgCb callback function.
tx_buf​ - Pointer to transmit buffer used during encoding.
tx_buf_len​ - Maximum length of the transmit buffer.
rx_buf​ - Pointer to receive buffer used during decoding.
rx_buf_len​ - Maximum length of the receive buffer.
connect_timeout_ms​ - Maximum command wait timeout in milliseconds.

Example:
#define MAX_BUFFER_SIZE 1024

#define DEFAULT_CMD_TIMEOUT_MS 1000

static​ ​int​ ​mqttclient_message_cb​(​MqttClient *client, MqttMessage *msg, ​byte
msg_new, ​byte​ msg_done​)
{

 ​if​ (msg_new) {
 ​/* Message new */
 }

 ​if​ (msg_done) {
 ​/* Message done */
 }

 ​return​ MQTT_CODE_SUCCESS;
 ​/* Return negative to terminate publish processing */
}

Copyright 2018 wolfSSL Inc. All rights reserved.

22

int​ rc = ​0​;
MqttClient client;

MqttNet net;

byte​ *tx_buf = NULL, *rx_buf = NULL;

tx_buf = malloc(MAX_BUFFER_SIZE);

rx_buf = malloc(MAX_BUFFER_SIZE);

rc = MqttClient_Init(&client, &net, mqttclient_message_cb,

 tx_buf, MAX_BUFFER_SIZE, rx_buf, MAX_BUFFER_SIZE,

 DEFAULT_CMD_TIMEOUT_MS);

if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Init: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
}

See Also:
None

5.3 MqttClient_Connect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Connect(

MqttClient *client,

MqttConnect *connect);

Description:
Encodes and sends the MQTT Connect packet and waits for the Connect
Acknowledgement packet. This is a blocking function that will wait for ​MqttNet.read
unless non-blocking is enabled (​WOLFMQTT_NONBLOCK​) and ​MQTT_CODE_CONTINUE​ is
returned.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.

Copyright 2018 wolfSSL Inc. All rights reserved.

23

connect​ - Pointer to ​MqttConnect​ structure initialized with connection parameters.

Example:

int​ rc = ​0​;
MqttClient client;

MqttConnect connect;

MqttMessage lwt_msg;

/* Define connect parameters */

connect.keep_alive_sec = keep_alive_sec;

connect.clean_session = clean_session;

connect.client_id = client_id;

/* Last will and testament sent by broker to subscribers of topic when broker

connection is lost */

memset(&lwt_msg, ​0​, ​sizeof​(lwt_msg));
connect.lwt_msg = &lwt_msg;

connect.enable_lwt = enable_lwt;

if​ (enable_lwt) {
lwt_msg.qos = qos;

lwt_msg.retain = ​0​;
lwt_msg.topic_name = ​"lwttopic"​;
lwt_msg.buffer = (​byte​*)DEFAULT_CLIENT_ID;
lwt_msg.buffer_len = strlen(DEFAULT_CLIENT_ID);

}

/* Optional authentication */

connect.username = username;

connect.password = password;

/* Send Connect and wait for Connect Ack */

rc = MqttClient_Connect(&client, &connect);

if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Connect: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
}

See Also:
MqttClient_Init

MqttClient_Disconnect

5.4 MqttClient_Publish

Copyright 2018 wolfSSL Inc. All rights reserved.

24

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Publish(

MqttClient *client,

MqttPublish *publish);

Description:
Encodes and sends the MQTT Publish packet and waits for the Publish response (if
QoS > 0). This is a blocking function that will wait for ​MqttNet.read​ unless
non-blocking is enabled (​WOLFMQTT_NONBLOCK​) and ​MQTT_CODE_CONTINUE​ is returned.
If QoS level = 1 then will wait for ​PUBLISH_ACK​.
If QoS level = 2 then will wait for ​PUBLISH_REC​ then send ​PUBLISH_REL​ and wait for
PUBLISH_COMP​.

Return Values:
MQTT_CODE_SUCCESS​ - success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.
publish​ - Pointer to ​MqttPublish​ structure initialized with message data.
Note​: ​MqttPublish​ and ​MqttMessage​ are same structure.

Example:

#define TEST_MESSAGE "test" /* NULL */

int​ rc = ​0​;
MqttPublish publish;

word16 packet_id = ​0​;

/* Publish Topic */

publish.retain = ​0​;
publish.qos = qos;

publish.duplicate = ​0​;
publish.topic_name = ​"pubtopic"​;
publish.packet_id = ++packet_id;

publish.buffer = (​byte​*)TEST_MESSAGE;
publish.buffer_len = strlen(TEST_MESSAGE);

rc = MqttClient_Publish(&client, &publish);

Copyright 2018 wolfSSL Inc. All rights reserved.

25

if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Publish: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
}

See Also:
MqttClient_Init

MqttClient_Subscribe

5.5 MqttClient_Subscribe

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Subscribe(

MqttClient *client,

MqttSubscribe *subscribe);

Description:
Encodes and sends the MQTT Subscribe packet and waits for the Subscribe
Acknowledgement packet. This is a blocking function that will wait for ​MqttNet.read
unless non-blocking is enabled (​WOLFMQTT_NONBLOCK​) and ​MQTT_CODE_CONTINUE​ is
returned.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.
subscribe​ - Pointer to ​MqttSubscribe​ structure initialized with subscription topic list
and desired QoS.

Example:

#define TEST_TOPIC_COUNT 2

Copyright 2018 wolfSSL Inc. All rights reserved.

26

int​ rc = ​0​;
MqttSubscribe subscribe;

MqttTopic topics[TEST_TOPIC_COUNT], *topic;

word16 packet_id = ​0​;

/* Build list of topics */

topics[​0​].topic_filter = ​"subtopic1"​;
topics[​0​].qos = qos;
topics[​1​].topic_filter = ​"subtopic2"​;
topics[​1​].qos = qos;

/* Subscribe Topic */

subscribe.packet_id = ++packet_id;

subscribe.topic_count = TEST_TOPIC_COUNT;

subscribe.topics = topics;

rc = MqttClient_Subscribe(&client, &subscribe);

if​ (rc == MQTT_CODE_SUCCESS) {
for​ (i = ​0​; i < subscribe.topic_count; i++) {
topic = &subscribe.topics[i];

printf(​" Topic %s, Qos %u, Return Code %u\n"​,
topic->topic_filter, topic->qos, topic->return_code);

}

}

else​ {
 printf(​"MQTT Subscribe: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
}

See Also:
MqttClient_Init

MqttClient_Unsubscribe

5.6 MqttClient_Unsubscribe

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Unsubscribe(

MqttClient *client,

MqttUnsubscribe *unsubscribe);

Copyright 2018 wolfSSL Inc. All rights reserved.

27

Description:
Encodes and sends the MQTT Unsubscribe packet and waits for the Unsubscribe
Acknowledgement packet. This is a blocking function that will wait for ​MqttNet.read
unless non-blocking is enabled (​WOLFMQTT_NONBLOCK​) and ​MQTT_CODE_CONTINUE​ is
returned.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.
unsubscribe​ - Pointer to ​MqttUnsubscribe​ structure initialized with topic list.

Example:

#define TEST_TOPIC_COUNT 2

int​ rc = ​0​;
MqttUnsubscribe unsubscribe;

MqttTopic topics[TEST_TOPIC_COUNT], *topic;

word16 packet_id = ​0​;

/* Build list of topics */

topics[​0​].topic_filter = ​"subtopic1"​;
topics[​1​].topic_filter = ​"subtopic2"​;

/* Unsubscribe Topics */

unsubscribe.packet_id = ++packet_id;

unsubscribe.topic_count = TEST_TOPIC_COUNT;

unsubscribe.topics = topics;

rc = MqttClient_Unsubscribe(&client, &unsubscribe);

if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Unsubscribe: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
}

See Also:
MqttClient_Init

MqttClient_Subscribe

Copyright 2018 wolfSSL Inc. All rights reserved.

28

5.7 MqttClient_Ping

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Ping(

MqttClient *client);

Description:
Encodes and sends the MQTT Ping Request packet and waits for the Ping Response
packet. This is a blocking function that will wait for ​MqttNet.read​ unless non-blocking
is enabled (​WOLFMQTT_NONBLOCK​) and ​MQTT_CODE_CONTINUE​ is returned.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.

Example:

/* Send Ping */

int​ rc = MqttClient_Ping(&client);
if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Ping: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
}

See Also:
MqttClient_Init

5.8 MqttClient_Disconnect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

Copyright 2018 wolfSSL Inc. All rights reserved.

29

int MqttClient_Disconnect(

MqttClient *client);

Description:
Encodes and sends the MQTT Disconnect packet (no response). This is a non-blocking
function that will try and send using ​MqttNet.write​.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.

Example:

int​ rc = MqttClient_Disconnect(&client);
if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Disconnect: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc),
rc);

}

See Also:
MqttClient_Init

MqttClient_Connect

5.9 MqttClient_WaitMessage

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_WaitMessage(

MqttClient *client,

int timeout_ms);

Description:

Copyright 2018 wolfSSL Inc. All rights reserved.

30

Waits for Publish packets to arrive. Incoming publish messages will arrive via callback
provided in ​MqttClient_Init​. This is a blocking function that will wait for MqttNet.read
unless non-blocking is enabled (​WOLFMQTT_NONBLOCK​) and ​MQTT_CODE_CONTINUE​ is
returned. If a timeout_ms is provided it will be passed up to ​MqttNet.read​ which can
be used for network select() with timeout or if non-blocking is enabled can return
MQTT_CODE_CONTINUE​.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.
timeout_ms​ ​- Milliseconds until read timeout.

Example:

#define DEFAULT_CMD_TIMEOUT_MS 1000

int​ rc = ​0​;
MqttMessage msg;

/* Read Loop */

while​ (mStopRead == ​0​) {
/* Try and read packet */

rc = MqttClient_WaitMessage(&client, &msg, DEFAULT_CMD_TIMEOUT_MS);

if​ (rc >= ​0​) {
/* Print incoming message */

printf(​"MQTT Message: Topic %s, Len %u\n"​, msg.topic_name, msg.buffer_len);
}

else​ ​if​ (rc != MQTT_CODE_ERROR_TIMEOUT) {
/* There was an error */

printf(​"MQTT Message Wait: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
break​;
}

}

See Also:
MqttClient_Init

MqttClient_Publish

Copyright 2018 wolfSSL Inc. All rights reserved.

31

5.10 MqttClient_NetConnect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

typedef int (*MqttTlsCb)(struct _MqttClient* client);

int MqttClient_NetConnect(

MqttClient *client,

const char *host,

word16 port,

int timeout_ms,

int use_tls,

MqttTlsCb cb);

Description:
Performs network connect with TLS (if ​use_tls​ is non-zero value). Will perform the
MqttTlsCb​ callback if ​use_tls​ is non-zero value.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.
host​ ​- Address of the broker server
port​ ​- Optional custom port. If zero will use defaults (1883=normal, 8883=TLS)
use_tls​ - If non-zero value will connect with and use TLS for encryption of data.
cb​ - A function callback for configuration of the SSL context certificate checking.

Example:

#define DEFAULT_CON_TIMEOUT_MS 5000

#define DEFAULT_MQTT_HOST "iot.eclipse.org"

word16 port = ​0​;
const​ ​char​* host = DEFAULT_MQTT_HOST;

Copyright 2018 wolfSSL Inc. All rights reserved.

32

static​ ​int​ ​mqttclient_tls_cb​(​MqttClient* client​)
{

 (​void​)client; ​/* Supress un-used argument */
 ​return​ SSL_SUCCESS;
}

/* Connect to broker */

int​ rc = MqttClient_NetConnect(&client, host, port, DEFAULT_CON_TIMEOUT_MS,
use_tls, mqttclient_tls_cb);

if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Net Connect: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);
}

See Also:
MqttClient_NetDisconnect

5.11 MqttClient_NetDisconnect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_NetDisconnect(

MqttClient *client);

Description:
Performs a network disconnect.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_CONTINUE​ - Non-blocking mode, perform IO and call again.
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ ​- Pointer to ​MqttClient​ structure already initialized using ​MqttClient_Init​.

Example:

int​ rc = MqttClient_NetDisconnect(&client);

Copyright 2018 wolfSSL Inc. All rights reserved.

33

if​ (rc != MQTT_CODE_SUCCESS) {
 printf(​"MQTT Net Disconnect: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc),
rc);

}

See Also:
MqttClient_NetConnect

5.12 MqttClient_ReturnCodeToString

Synopsis:

#include <wolfmqtt/mqtt_client.h>

const char* MqttClient_ReturnCodeToString(

int return_code);

Description:
Performs lookup of a ​WOLFMQTT_API​ return values.

Return Values:
String representation of the return code.

Parameters:
return_code​ - The return value from a ​WOLFMQTT_API​ function.

Example:

printf(​"Return: %s (%d)\n"​, MqttClient_ReturnCodeToString(rc), rc);

See Also:
None

5.13 MqttClient_SetDisconnectCallback

Synopsis
#include <wolfmqtt/mqtt_client.h>

Copyright 2018 wolfSSL Inc. All rights reserved.

34

int MqttClient_SetDisconnectCallback(

MqttClient *client,

MqttDisconnectCb cb,

void* ctx);

Description:
Sets a disconnect callback with custom context.

Return Values:
MQTT_CODE_SUCCESS​ - Success
MQTT_CODE_ERROR_* ​- (See enum ​MqttPacketResponseCodes​)

Parameters:
client​ - Pointer to MqttClient structure (uninitialized is okay)
cb​ - Pointer to disconnect callback function
ctx​ - Pointer to your own context

Example:

#ifdef WOLFMQTT_DISCONNECT_CB

static​ ​int​ ​mqtt_disconnect_cb​(​MqttClient* client, ​int​ error_code, ​void​* ctx​)
{

 (​void​)client;
 (​void​)ctx;
 PRINTF(​"Disconnect (error %d)"​, error_code);
 ​return​ ​0​;
}

#endif

#ifdef WOLFMQTT_DISCONNECT_CB

/* setup disconnect callback */

rc = MqttClient_SetDisconnectCallback(&mqttCtx->client, mqtt_disconnect_cb, NULL);

if​ (rc != MQTT_CODE_SUCCESS) {
 ​goto​ exit;
}

#endif

See also:
None

Copyright 2018 wolfSSL Inc. All rights reserved.

35

