7
wolfsSst

C# Wrapper

API Guide
December 7th 2015, version 1.1

1.0 Initialization / Shutdown

The functions in this section have to do with initializing the wolfSSL library and shutting
it down (freeing resources) after it is no longer needed by the application.

Init

Synopsis:
int Init(void);

Description:

Initializes the wolfssl library for use. Must be called once per application and before any
other call to the library.

Return Values:
If successful the call will return SUCCESS.



Parameters:
This function has no parameters.

Example:

int ret = 0;
ret = wolfssl.Init();
if (ret != wolfssl.SUCCESS) {
// failed to initialize wolfssl library

See Also:
Cleanup
Cleanup

Synopsis:
void Cleanup(void);

Description:
Un-initializes the wolfssl library from further use. Doesn’t have to be called, though it

will free any resources used by the library.

Return Values:
No return value for this function.

Parameters:
There are no parameters for this function.

Example:

wolfssl.Cleanup()

See Also:
Init



shutdown

Synopsis:
int shutdown(IntPtr ssl);

Description:
This function shuts down an active SSL/TLS connection using the SSL session, ssl.
This function will try to send a “close notify” alert to the peer.

The calling application can choose to wait for the peer to send its “close notify” alert in
response or just go ahead and shut down the underlying connection after directly calling
shutdown (to save resources). Either option is allowed by the TLS specification.

Return Values:

SUCCESS - will be returned upon success.

Parameters:

ssl - pointer to the SSL session, created with wolfssl.new_ssl().

Example:

int ret = 0;
IntPtr ssl;

ret = wolfssl.shutdown (ssl);
if (ret != wolfssl.SUCCESS) {
// failed to shut down SSL connection

}

See Also:
free
CTX free



1.1 Certificates and Keys

The functions in this section have to do with loading certificates and keys into wolfSSL.
SetTmpDH_file

Synopsis:
int SetTmpDH_file(IntPtr ssl, StringBuilder dhparam, int format);

Description:

This function loads a DH parameter key file into the SSL context. The file is provided by
the dhparam argument. The format argument specifies the format type of the file -
SSL_FILETYPE_ASN1or SSL_FILETYPE_PEM. Please see the examples for proper
usage.

Return Values:
If successful the call will return SUCCESS, otherwise FAILURE will be returned. If the
function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument

- The file doesn’t exist, can’t be read, or is corrupted

- An out of memory condition occurs

- Base 16 decoding fails on the file

- The key file is encrypted but no password is provided

Example:

int ret = 0;
IntPtr ssl;
StringBuilder dhparam = new StringBuilder (“dh2048.pem”) ;

ret = wolfssl.SetTmpDH file(ssl, dhparam,
wolfssl.SSL FILETYPE PEM);
if (ret != wolfssl.SUCCESS) {
// error loading param file

}



CTX_SetMinDhKey_Sz

Synopsis:
int SetMinDhKey_Sz(IntPtr ctx, short sz);

Description:
This function sets the minimum DH key size into the SSL context(CTX context).

Return Values:
If successful the call will return SUCCESS, otherwise FAILURE will be returned. If the
function call fails, possible causes might include:

Example:

int ret = 0;
IntPtr ctx;
short sz = 512;

ret = wolfssl.SetMinDhKey Sz (ctx, sz);
if (ret != wolfssl.SUCCESS) {
// error setting key size

}

CTX_use_PrivateKey file

Synopsis:
int CTX use_PrivateKey _file(IntPtr ctx, string file, int format);

Description:
This function loads a private key file into the SSL context (wolfssl_CTX). The file is
provided by the file argument. The format argument specifies the format type of the file



- SSL_FILETYPE_ASN1or SSL_FILETYPE_PEM. Please see the examples for proper
usage.

Return Values:
If successful the call will return SUCCESS, otherwise FAILURE will be returned. If the
function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument

- The file doesn’t exist, can’t be read, or is corrupted

- An out of memory condition occurs

- Base16 decoding fails on the file

- The key file is encrypted but no password is provided

Example:

int ret = 0;
IntPtr ctx;

ret = wolfssl.CTX use PrivateKey file(ctx, “server-key.pem”,
wolfssl.SSL FILETYPE PEM) ;
if (ret != wolfssl.SUCCESS) ({
// error loading key file
}

CTX use_certificate_file

Synopsis:
int CTX use_certificate_file(IntPtr ctx, string file, int format);

Description:

This function loads a certificate file into the SSL context (wolfssl_CTX). The file is
provided by the file argument. The format argument specifies the format type of the file
- either SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM. Please see the examples for
proper usage.



Return Values:
If successful the call will return SUCCESS, otherwise FAILURE will be returned. If the
function call fails, possible causes might include:

- The file is in the wrong format, or the wrong format has been given using the “format”
argument

- file doesn’t exist, can’t be read, or is corrupted

- an out of memory condition occurs

- Base16 decoding fails on the file

Parameters:
ctx - a pointer to a wolfssl_CTX structure, created using CTX_new()

file - a pointer to the name of the file containing the certificate to be loaded into the
wolfssl SSL context.

format - format of the certificates pointed to by file. Possible options are
SSL_FILETYPE_ASN1 or SSL_FILETYPE_PEM.

Example:

int ret = 0;
IntPtr ctx;

ret = wolfssl.CTX use certificate file(ctx, “client-cert.pem”,
wolfssl.SSL FILETYPE PEM);
if (ret != SSL SUCCESS) {
// error loading cert file

}



1.2 Context and Session Setup

The functions in this section have to do with creating and setting up SSL/TLS context
objects (wolfssl_CTX) and SSL/TLS session objects (wolfSSL).

usev23_client

Synopsis:
IntPtr usev23_client(void);

Description:

The usev23_client() function is used to indicate that the application is a client and will
support the highest protocol version supported by the server between SSL 3.0 - TLS
1.2. This function allocates memory for and initializes a new wolfssl METHOD
structure to be used when creating the SSL/TLS context with CTX_new().

Both wolfssl clients and servers have robust version downgrade capability. If a specific
protocol version method is used on either side, then only that version will be negotiated
or an error will be returned. For example, a client that uses TLSv1 and tries to connect
to a SSLv3 only server will fail, likewise connecting to a TLSv1.1 will fail as well.

To resolve this issue, a client that uses the usev23_client() function will use the highest
protocol version supported by the server and downgrade to SSLv3 if needed. In this
case, the client will be able to connect to a server running SSLv3 - TLSv1.2.

Return Values:

If successful, the call will return a pointer to the newly created wolfssl METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Parameters:

This function has no parameters.



Example:

IntPtr method;
IntPtr ctx;

method = wolfssl.usev23 client();
if (method == IntPtr.Zero) {

// unable to get method
}

ctx = wolfssl.CTX new (method);

See Also:
useTLSv1_2_client
useDTLSv1_2 client
CTX new

Synopsis:
IntPtr usev23_server(void);

Description:

usev23_server

The usev23_server() function is used to indicate that the application is a server and will
support clients connecting with protocol version from SSL 3.0 - TLS 1.2. This function
allocates memory for and initializes a new wolfss| METHOD structure to be used when
creating the SSL/TLS context with CTX_new().

Return Values:

If successful, the call will return a pointer to the newly created wolfssl METHOD

structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to

ENOMEM).
Parameters:

This function has no parameters.



Example:

IntPtr method;
IntPtr ctx;

method = wolfssl.usev23 server();
if (method == IntPtr.Zero) {

// unable to get method
}

ctx = wolfssl.CTX new (method);

See Also:
useTLSv1_2 server
useDTLSv1_server
CTX_new

useTLSv1_2 client

Synopsis:
IntPtr useTLSv1_2_client(void);

Description:

The useTLSv1_2_client() function is used to indicate that the application is a client and
will only support the TLS 1.2 protocol. This function allocates memory for and initializes
a new wolfss| METHOD structure to be used when creating the SSL/TLS context with
CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created wolfssl METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to

ENOMEM).

Example:

IntPtr method;



IntPtr ctx;

method = wolfssl.useTLSvl 2 client();
if (method == IntPtr.Zero) {

// unable to get method
}

ctx = wolfssl.CTX new (method);

See Also:
usev23_client
CTX_new

useTLSv1_2_server

Synopsis:
IntPtr useTLSv1_2_ server(void);

Description:

The useTLSv1_2 server() function is used to indicate that the application is a server
and will only support the TLS 1.2 protocol. This function allocates memory for and
initializes a new wolfss|_ METHOD structure to be used when creating the SSL/TLS
context with CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created wolfss|_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

IntPtr method;
IntPtr ctx;

method = wolfssl.useTLSvl 2 server();
if (method == IntPtr.Zero) {
// unable to get method



}

ctx = wolfssl.CTX new (method);

See Also:
usev23_server_method
CTX_new

useDTLSv1_2_client

Synopsis:
IntPtr useDTLSv1_2_client(void);

Description:

The useDTLSv1_2_client() function is used to indicate that the application is a client
and will only support the DTLS 1.2 protocol. This function allocates memory for and
initializes a new wolfss|_METHOD structure to be used when creating the SSL/TLS
context with CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created wolfss|_METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

IntPtr method;
IntPtr ctx;

method = wolfssl.useDTLSvl 2 client();
if (method == IntPtr.Zero) {

// unable to get method
}

ctx = wolfssl.CTX new (method);



See Also:
useTLSv1_2 client
usev23 client
CTX_new

useDTLSv1_2 server

Synopsis:
IntPtr useDTLSv1_2 server(void);

Description:

The .useDTLSv1_2_server() function is used to indicate that the application is a server
and will only support the DTLS 1.2 protocol. This function allocates memory for and
initializes a new wolfssl_ METHOD structure to be used when creating the SSL/TLS
context with CTX_new().

Return Values:
If successful, the call will return a pointer to the newly created wolfssl METHOD
structure.

If memory allocation fails when calling XMALLOC, the failure value of the underlying
malloc() implementation will be returned (typically NULL with errno will be set to
ENOMEM).

Example:

IntPtr method;
IntPtr ctx;

method = wolfssl.useDTLSvl 2 server();
if (method == IntPtr.Zero) {

// unable to get method
}

ctx = wolfssl.CTX new (method);

See Also:
useTLSv1_2 server
usev23_ server



CTX_new

new_ssl

Synopsis:
IntPtr new_ssl(IntPtr ctx);

Description:
This function creates a new SSL session, taking an already created SSL context as
input.

Return Values:
If successful the call will return a pointer to the newly-created wolfssl| structure. Upon
failure, NULL will be returned.

Parameters:
ctx - pointer to the SSL context, created with CTX_new().

Example:

IntPtr ssl;
IntPtr ctx;

ctx = wolfssl.CTX new (method);
if (ctx == IntPtr.Zero) {
// context creation failed

ssl = wolfssl.new ssl(ctx);
if (ssl == NULL) {
// SSL object creation failed

See Also:
CTX new

free



Synopsis:
void free(IntPtr ssl);

Description:
This function frees an allocated wolfssl| object.

Return Values:
No return values are used for this function.

Parameters:
ssl - pointer to the SSL object, created with new_ssl().

Example:

IntPtr ssl;

wolfssl.free(ssl);

See Also:
CTX_new
new_ssl

CTX free

CTX_new

Synopsis:
IntPtr CTX_new(IntPtr method);

Description:
This function creates a new SSL context, taking a desired SSL/TLS protocol method for
input.

Return Values:
If successful the call will return a pointer to the newly-created wolfssl_CTX. Upon

failure, NULL will be returned.

Parameters:



method - pointer to the desired wolfssl METHOD to use for the SSL context. This is
created using one of the usevXX_XXXX() functions to specify SSL/TLS protocol level.

Example:

IntPtr ctx;
IntPtr method;

method = wolfssl.usev23 server
if (method == IntPtr.Zero) {

// unable to get method
}

ctx = wolfssl.CTX new (method);
if (ctx == IntPtr.Zero) {
// context creation failed

}

See Also:
new_ssl
CTX dtls_new

CTX_dtls_new

Synopsis:
IntPtr CTX_dtls_new(IntPtr method);

Description:
This function creates a new SSL context, taking a desired DTLS protocol method for
input.

Return Values:
If successful the call will return a pointer to the newly-created wolfssl_CTX. Upon
failure, NULL will be returned.

Parameters:

method - pointer to the desired wolfssl METHOD to use for the SSL context. This is
created using one of the useDTLSvXX_ XXXX() functions to specify DTLS protocol level.



Example:

IntPtr ctx;
IntPtr method;

method = wolfssl.useDTLSvl 2 server

if (method == IntPtr.Zero) {
// unable to get method

ctx = wolfssl.CTX dtls new(method) ;
if (ctx == IntPtr.Zero) {
// context creation failed

See Also:
new_ssl
CTX_new

CTX free

Synopsis:
void CTX_free(IntPtr ctx);

Description:
This function frees an allocated wolfSSL CTX object. Frees memory used for keeping

alive any callbacks used such as PSK and |O delegates.

Return Values:
No return values are used for this function.

Parameters:
ctx - pointer to the SSL context, created with CTX_new().

Example:

IntPtr ctx;

wolfssl.CTX free (ctx);



See Also:
CTX_new
CTX dtls_new
new_ssl

free

set_cipher_list

Synopsis:
int set_cipher_list(IntPtr ssl, StringBuilder list);

Description:

This function sets cipher suite list for a given wolfssl object (SSL session). The ciphers
in the list should be sorted in order of preference from highest to lowest. Each call to
wolfssl.set_cipher_list() resets the cipher suite list for the specific SSL session to the
provided list each time the function is called.

The cipher suite list, list, is a null-terminated text string, and a colon-delimited list. For
example, one value for list may be

"DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256"

Valid cipher values are the full name values from the cipher_names]] array in
src/internal.c:

RC4-SHA

RC4-MD5
DES-CBC3-SHA
AES128-SHA
AES256-SHA
NULL-SHA
NULL-SHA256
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA
PSK-AES128-CBC-SHA256
PSK-AES128-CBC-SHA
PSK-AES256-CBC-SHA
PSK-NULL-SHA256



PSK-NULL-SHA

HC128-MD5

HC128-SHA

HC128-B2B256
AES128-B2B256
AES256-B2B256

RABBIT-SHA

NTRU-RC4-SHA
NTRU-DES-CBC3-SHA
NTRU-AES128-SHA
NTRU-AES256-SHA

QSH

AES128-CCM-8

AES256-CCM-8
ECDHE-ECDSA-AES128-CCM-8
ECDHE-ECDSA-AES256-CCM-8
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES256-SHA
ECDHE-RSA-RC4-SHA
ECDHE-RSA-DES-CBC3-SHA
ECDHE-ECDSA-RC4-SHA
ECDHE-ECDSA-DES-CBC3-SHA
AES128-SHA256
AES256-SHA256
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA256
ECDH-RSA-AES128-SHA
ECDH-RSA-AES256-SHA
ECDH-ECDSA-AES128-SHA
ECDH-ECDSA-AES256-SHA
ECDH-RSA-RC4-SHA
ECDH-RSA-DES-CBC3-SHA
ECDH-ECDSA-RC4-SHA
ECDH-ECDSA-DES-CBC3-SHA
AES128-GCM-SHA256
AES256-GCM-SHA384
DHE-RSA-AES128-GCM-SHA256



DHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES256-GCM-SHA384
ECDH-ECDSA-AES128-GCM-SHA256
ECDH-ECDSA-AES256-GCM-SHA384
CAMELLIA128-SHA
DHE-RSA-CAMELLIA128-SHA
CAMELLIA256-SHA
DHE-RSA-CAMELLIA256-SHA
CAMELLIA128-SHA256
DHE-RSA-CAMELLIA128-SHA256
CAMELLIA256-SHA256
DHE-RSA-CAMELLIA256-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDH-RSA-AES256-SHA384
ECDH-ECDSA-AES256-SHA384

Return Values:

SUCCESS will be returned upon successful function completion, otherwise
FAILURE will be returned on failure.

Parameters:
ssl - pointer to the SSL session, created with wolfssl.new_ssI().

list - null-terminated text string and a colon-delimited list of cipher suites to use with the
specified SSL session.

Example:



int ret = 0;

IntPtr ssl;

StingBuilder list = new

StringBuilder (“"DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256") ;

ret = wolfssl.set cipher list(ssl, list);
if (ret != wolfssl.SUCCESS) {

// failed to set cipher suite list
}

See Also:
CTX set_cipher_list
new_ssl

CTX_set_cipher_list

Synopsis:
int CTX set_cipher_list(IntPtr ctx, StringBuilder list);

Description:

This function sets cipher suite list for a given wolfssl_CTX. This cipher suite list
becomes the default list for any new SSL sessions (wolfssl) created using this context.
The ciphers in the list should be sorted in order of preference from highest to lowest.
Each call to CTX_set_cipher_list() resets the cipher suite list for the specific SSL
context to the provided list each time the function is called.

The cipher suite list, list, is a null-terminated text string, and a colon-delimited list. For
example, one value for list may be

"DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256"

Valid cipher values are the full name values from the cipher_names][] array in
src/internal.c:

RC4-SHA
RC4-MD5
DES-CBC3-SHA
AES128-SHA
AES256-SHA
NULL-SHA



NULL-SHA256
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA
PSK-AES128-CBC-SHA256
PSK-AES128-CBC-SHA
PSK-AES256-CBC-SHA
PSK-NULL-SHA256
PSK-NULL-SHA

HC128-MD5

HC128-SHA

HC128-B2B256
AES128-B2B256
AES256-B2B256

RABBIT-SHA

QSH

AES128-CCM-8
AES256-CCM-8
ECDHE-ECDSA-AES128-CCM-8
ECDHE-ECDSA-AES256-CCM-8
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES256-SHA
ECDHE-RSA-RC4-SHA
ECDHE-RSA-DES-CBC3-SHA
ECDHE-ECDSA-RC4-SHA
ECDHE-ECDSA-DES-CBC3-SHA
AES128-SHA256
AES256-SHA256
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA256
ECDH-RSA-AES128-SHA
ECDH-RSA-AES256-SHA
ECDH-ECDSA-AES128-SHA
ECDH-ECDSA-AES256-SHA
ECDH-RSA-RC4-SHA
ECDH-RSA-DES-CBC3-SHA
ECDH-ECDSA-RC4-SHA
ECDH-ECDSA-DES-CBC3-SHA



AES128-GCM-SHA256
AES256-GCM-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES256-GCM-SHA384
ECDH-ECDSA-AES128-GCM-SHA256
ECDH-ECDSA-AES256-GCM-SHA384
CAMELLIA128-SHA
DHE-RSA-CAMELLIA128-SHA
CAMELLIA256-SHA
DHE-RSA-CAMELLIA256-SHA
CAMELLIA128-SHA256
DHE-RSA-CAMELLIA128-SHA256
CAMELLIA256-SHA256
DHE-RSA-CAMELLIA256-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDH-RSA-AES256-SHA384
ECDH-ECDSA-AES256-SHA384

Return Values:

SUCCESS will be returned upon successful function completion, otherwise
FAILURE will be returned on failure.

Parameters:
ctx - pointer to the SSL context, created with CTX_new().

list - null-terminated text string and a colon-delimited list of cipher suites to use with the



specified SSL context.

Example:

IntPtr ctx;
StringBuilder list = new
StringBuilder (“"DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:AES256-SHA256") ;

ret = wolfssl.CTX set cipher list(ctx, list);
if (ret != wolfssl.SUCCESS) {
// failed to set cipher suite list

See Also:
set_cipher_list
CTX_new
CTX dtls_new
get_ciphers
Synopsis:

int get_ciphers(StringBuilder list, int sz);

Description:
Creates a list of all available cipher suites.

Return Values:
If successful the call will return SUCCESS, otherwise, FAILURE will be returned.

Parameters:
list - buffer to fill with cipher suite names.
sz - size of buffer available to fill with cipher suite names.

Example:

int sz = 4096;
StringBuilder list = new StringBuilder(sz);



ret = wolfssl.get ciphers(list, sz);
if (ret != wolfssl.SUCCESS) {
// failed to set SSL file descriptor

get_current_cipher

Synopsis:
int get_current_cipher(IntPtr ssl);

Description:
Gets the current cipher suite being used in the SSL/TLS connection

Return Values:
Returns a string that has the current cipher suite being used by the ssl structure.

Parameters:
ssl - ssl context structure for connection.

Example:

string cipher;
IntPtr ssl;

cipher = wolfssl.get ciphers(ssl);

get_version

Synopsis:
int get_version(IntPtr ssl);

Description:
Gets the current version being used in the SSL/TLS connection ie TLSv1.2.

Return Values:
Returns a string that has the current version being used by the ssl structure.



Parameters:
ssl - ssl context structure for connection.

Example:

string version;
IntPtr ssl;

version = wolfssl.get version(ssl);

set_fd

Synopsis:
int set_fd(IntPtr ssl, Socket fd);

Description:
This function assigns a Socket (fd) as the input/output facility for the SSL connection.

Return Values:
If successful the call will return SUCCESS, otherwise, FAILURE will be returned.

Parameters:
ssl - pointer to the SSL session, created with new_ssl().
fd - Socket to use with SSL/TLS connection.

Example:

Socket sockfd;
IntPtr ssl;

ret = wolfssl.set fd(ssl, sockfd);
if (ret != wolfssl.SUCCESS) {
// failed to set SSL file descriptor



See Also:
SetlOSend
SetlORecv

set_dtls_fd

Synopsis:
int set_dtls_fd(IntPtr ssl, UdpClient fd, IPEndPoint ep);

Description:
This function assigns a UdpCleint (fd) and IPEndPoint (ep) as the input/output facility
for the SSL connection.

Return Values:
If successful the call will return SUCCESS, otherwise, FAILURE will be returned.

Parameters:

ssl - pointer to the SSL session, created with wolfssl.new_ssl().
fd - UdpClient to use with DTLS connection.

ep - IPEndPoint to use with DTLS connection.

Example:

UdpClient sockfd;
IPEndPoint ep;
IntPtr ssl;

ret = wolfssl.set dtls fd(ssl, sockfd, ep);
if (ret != wolfssl.SUCCESS) {

// failed to set SSL file descriptor
}

See Also:
SetlOSend
SetlORecv



1.3 Callbacks

The functions in this section have to do with callbacks which the application is able to
set in relation to wolfSSL.
CallbacklORecv_delegate

Synopsis:
int CallbacklORecv_delegate(IntPtr ssl, IntPtr buf, int sz, IntPtr rctx);

Description:
This delegate is used for 10 receive call back.

Return Values:
Size of message received.

Parameters:

ssl - pointer to the SSL session, created with wolfssl.new_ssl().
buf - pointer buffer for storing the received message.

sz - the size of buffer available for message.

rctx - pointer to the context passed along during SSL receive.

See Also:
SetlORecv
SetlOSend

CallbacklOSend_delegate

Synopsis:
int CallbacklOSend_delegate(IntPtr ssl, IntPtr buf, int sz, IntPtr sctx);

Description:



This delegate is used for 10 send call back.

Return Values:

Size of message sent.

Parameters:

ssl - pointer to the SSL session, created with new_ssl().
buf - pointer to the message to send.

sz - size of message to send.

sctx - pointer to the context passed along during SSL send.

See Also:
wolfssl.SetlORecv
wolfssl.SetlOSend

SetlORecv

Synopsis:
void SetlORecv(IntPtr ctx, CallbacklORecv_delegate CBIORecv);

Description:
This function registers a receive callback for wolfssl to get input data. It is kept alive in

memory by the CTX to avoid the garbage collector.

Return Values:
No return values are used for this function.

Parameters:
ctx - pointer to the SSL context, created with wolfssl.CTX_new().

callback - function to be registered as the receive callback for the wolfssl context, ctx.
The signature of this function must follow that as shown above in the delegate



CallbacklORecv_delegate.

Example:
private int MyEmbedReceive (IntPtr ssl, IntPtr buf, int sz, IntPtr ctx)

{

// custom EmbedReceive function

IntPtr ctx;

CallbackIORecv delegate myCb = new CallbackIORecv delegate (MyEmbedReceive) ;
// Register the custom receive callback with wolfssl
wolfssl.SetIORecv (ctx, myCB);

See Also:
SetlOSend
SetlOSend

Synopsis:
void SetlOSend(IntPtr ctx, CallbacklOSend_delegate CBIOSend);

Description:
This function registers a send callback for wolfssl to write output data. Memory used for

delegate is kept alive by the CTX.

Return Values:
No return values are used for this function.

Parameters:
ctx - pointer to the SSL context, created with CTX_new().

callback - function to be registered as the send callback for the wolfssl context, ctx.
The signature of this function must follow that as shown above



inCallbacklOSend_delegate.

Example:

private int MyEmbedSend (IntPtr ssl, IntPtr buf, int sz, IntPtr ctx)
{

// custom EmbedSend function
}
IntPtr ctx;
CallbackIOSend delegate myCB = new CallbackIOSend (MyEmbedSend) ;

// Register the custom receive callback with wolfssl
wolfssl.SetIOSend(ctx, myCb);

See Also:
SetlORecv
SetLogging

Synopsis:
int SetLogging(wolfssl.loggingCB func);

delegate loggingCB(int logLevel, StringBuilder logMessage);

Description:

This function registers a logging callback that will be used to handle the C# wolfssl log
message. By default, no logging messages are printed out this is for security so the

user can direct where logging messages are displayed at.

Return Values:
No return values are used for this function.

Parameters:

wolfssl.loggingCB- function to register as a logging callback. Function signature must
follow the above prototype.



Example:

int ret = 0;

// Logging callback prototype
void MyLoggingCallback (int logLevel, StringBuilder logMessage) ;

// Register the custom logging callback with wolfssl
ret = wolfssl.SetLogging (myLogCallback) ;
if (ret != 0) {

// failed to set logging callback

void MyLoggingCallback (int logLevel, StringBuilder logMessage)
{

// custom logging function

See Also:

1.4 Error Handling and Debugging

The functions in this section have to do with printing and handling errors as well as
enabling and disabling debugging in wolfSSL.

get_error

Synopsis:
string get_error(IntPtr ssl);

Description:
This function converts an error into a more human-readable error string. Providing the
error number concatenated with the error description.

Return Values:
On successful completion, this function returns the string containing the error value and

description.

Example:



int err = 0;
IntPtr ssl;

string error;

error = wolfssl.get error (ssl);
Console.WritelLine (error) ;

See Also:

1.5 Connection, Session, and I/O

The functions in this section deal with setting up the SSL/TLS connection, managing
SSL sessions, and input/output.
accept

Synopsis:
int accept(IntPtr ssl);

Description:
This function is called on the server side and waits for an SSL client to initiate the
SSL/TLS handshake. When this function is called, the underlying communication

channel has already been set up.

With the underlying 1/O being blocking, accept() will only return once the handshake has
been finished or an error occurred.

Return Values:
If successful the call will return SUCCESS.

To get a more detailed error code if SUCCESS is not returned, call get_error().
Parameters:

ssl - a pointer to a wolfssl structure, created using new_ssl().



Example:

int ret = 0;
string err;
IntPtr ssl;
string buffer;

ret = wolfssl.accept(ssl);
if (ret != wolfssl.SUCCESS) {

err = wolfssl.get error(ssl);

Console.WriteLine (err);

}

See Also:
get_error
connect

Synopsis:
int connect(IntPtr ssl);

Description:

connect

This function is called on the client side and initiates an SSL/TLS handshake with a
server. When this function is called, the underlying communication channel has already

been set up.

With the underlying I/O is blocking, connect() will only return once the handshake has

been finished or an error occurred.

wolfssl takes a different approach to certificate verification than OpenSSL does. The
default policy for the client is to verify the server, this means that if you don't load CAs to
verify the server you'll get a connect error, unable to verify (-155).

Return Values:

If successful the call will return SUCCESS.

To get a more detailed error code, call get_error().



Parameters:
ssl - a pointer to a wolfssl structure, created using new_ssl().

Example:

int ret = 0;
string err;
IntPtr ssl;
char buffer;

ret = wolfssl.connect(ssl);

if (ret != wolfssl.SUCCESS) {
err = wolfssl.get error(ssl);
Console.Writeline (err);

See Also:
get_error
accept

get_fd

Synopsis:
int get_fd(IntPtr ssl);

Description:
This function returns the Socket information used as the input/output facility for the SSL

connection.

Return Values:
If successful the call will return the SSL session Socket information.

Parameters:
ssl - pointer to the SSL session, created with new_ssl().

Example:



Socket sockfd;
IntPtr ssl;

sockfd = wolfssl.get fd(ssl);

See Also:
set fd
set_dtls_fd
get_dtls_fd

get_dtls_fd

Synopsis:
intget_dtls_fd(IntPtr ssl);

Description:
This function returns the DTLS_con class with information used as the input/output
facility for the DTLS connection.

Return Values:
If successful the call will return the DTLS session connection information.

Parameters:
ssl - pointer to the SSL session, created with new_ssl().

Example:

wolfssl.DTLS con sockfd;
IntPtr ssl;

sockfd = wolfssl.get dtls fd(ssl);

See Also:
set fd
set dtls fd



read

Synopsis:
int read(IntPtr ssl, StringBuilder data, int sz);

Description:
This function reads sz bytes from the SSL session (ssl) internal read buffer into the
buffer data. The bytes read are removed from the internal receive buffer.

If necessaryread() will negotiate an SSL/TLS session if the handshake has not already
been performed yet by connect() or accept().

The SSL/TLS protocol uses SSL records which have a maximum size of 16kB (the max
record size can be controlled by the MAX_RECORD_SIZE define in
<wolfssl_root>/wolfssl/internal.h). As such, wolfssl needs to read an entire SSL record
internally before it is able to process and decrypt the record. Because of this, a call to
read() will only be able to return the maximum buffer size which has been decrypted at
the time of calling. There may be additional not-yet-decrypted data waiting in the
internal wolfssl receive buffer which will be retrieved and decrypted with the next call to
read().

If sz is larger than the number of bytes in the internal read buffer,read() will return the
bytes available in the internal read buffer. If no bytes are buffered in the internal read
buffer yet, a call to read() will trigger processing of the next record.

Return Values:

>0 - the number of bytes read upon success.

0 - will be returned upon failure. This may be caused by a either a clean (close notify
alert) shutdown or just that the peer closed the connection. Call get_error() for the

specific error code.

Use get_error() to get a specific error code.

Parameters:



ssl - pointer to the SSL session, created with new_ssl().
data - buffer where read() will place data read.
sz - number of bytes to read into data.

Example:

IntPtr ssl;
StringBuilder reply;

input = wolfssl.read(ssl, reply, reply.Length);
if (input > 0) {

// “input” number of bytes returned into buffer “reply”
}

See wolfssl examples for more complete examples of read().

See Also:
write

read (using byte[])

Synopsis:
int read(IntPtr ssl, byte[] data, int sz);

Description:

This function reads sz bytes from the SSL session (ssl) internal read buffer into the
buffer data. The bytes read are removed from the internal receive buffer. To better
facilitate working with raw bytes this function allows for using a byte array.

If necessary read() will negotiate an SSL/TLS session if the handshake has not already
been performed yet by connect() or accept().

The SSL/TLS protocol uses SSL records which have a maximum size of 16kB (the max
record size can be controlled by the MAX_RECORD_SIZE define in
<wolfssl_root>/wolfssl/internal.h). As such, wolfssl needs to read an entire SSL record
internally before it is able to process and decrypt the record. Because of this, a call to



read() will only be able to return the maximum buffer size which has been decrypted at
the time of calling. There may be additional not-yet-decrypted data waiting in the
internal wolfssl receive buffer which will be retrieved and decrypted with the next call to
read().

If sz is larger than the number of bytes in the internal read buffer,read() will return the
bytes available in the internal read buffer. If no bytes are buffered in the internal read
buffer yet, a call to read() will trigger processing of the next record.

Return Values:

>0 - the number of bytes read upon success.

0 - will be returned upon failure. This may be caused by a either a clean (close notify
alert) shutdown or just that the peer closed the connection. Call get_error() for the

specific error code.

Use get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with new_ssl().
data - byte array buffer where read() will place data read.
sz - number of bytes to read into data.

Example:

IntPtr ssl;
byte[] reply = new byte[1024];

input = wolfssl.read(ssl, reply, reply.Length);
if (input > 0) {

// “input” number of bytes returned into buffer “reply”
}

See wolfssl examples for more complete examples of read().



See Also:
write
write

Synopsis:
int write(IntPtr ssl, const StringBuilder data, int sz);

Description:
This function writes sz bytes from the buffer, data, to the SSL connection, ssl.

If necessary, write() will negotiate an SSL/TLS session if the handshake has not already
been performed yet by connect() or accept().

With the underlying 1/O is blocking, write() will only return once the buffer data of size sz
has been completely written or an error occurred.

Return Values:

>0 - the number of bytes written upon success.

0 - will be returned upon failure. Call get_error() for the specific error code.
Use get_error() to get a specific error code.

Parameters:

ssl - pointer to the SSL session, created with wolfssl.new().

data - data buffer which will be sent to peer.

sz - size, in bytes, of data to send to the peer (data).

Example:

IntPtr ssl;
StringBuilder msg = new StringBuilder (“hello wolfssl!”);



int msgSz = msg.Length;
int flags;
int ret;

ret = wolfssl.write(ssl, msg, msgSz);
if (ret <= 0) {
// wolfssl.write() failed, call wolfssl.get error()

}

See wolfssl examples for more more detailed examples of wolfssl.write().

See Also:
read

write (using byte[])

Synopsis:
int write(IntPtr ssl, const byte[] data, int sz);

Description:
This function writes sz bytes from the buffer, data, to the SSL connection, ssl. Is to
provided easier use when working with raw bytes, allowing for users to pass the raw

bytes to the wolfssl| write function.

If necessary, write() will negotiate an SSL/TLS session if the handshake has not already
been performed yet by connect() or accept().

With the underlying 1/O is blocking, write() will only return once the buffer data of size sz
has been completely written or an error occurred.

Return Values:

>0 - the number of bytes written upon success.

0 - will be returned upon failure. Call get_error() for the specific error code.
Use get_error() to get a specific error code.

Parameters:



ssl - pointer to the SSL session, created with wolfssl.new().
data - byte array data buffer which will be sent to peer.
sz - size, in bytes, of data to send to the peer (data).

Example:

IntPtr ssl;

byte[] msg = new byte[] {0 ,1 ,7, 255};
int msgSz = msg.Length;

int ret;

ret = wolfssl.write(ssl, msg, msgSz);
if (ret <= 0) {

// wolfssl.write() failed, call wolfssl.get error()
}

See wolfssl examples for more more detailed examples of wolfssl.write().

See Also:
read

1.6 PSK

The functions in this section deal with setting up a PSK connection.

CTX_use_psk_identity_hint

Synopsis:
int CTX use_psk_identity hint(IntPtr ctx, StingBuilder hint);

Description:
This function is called to set the hint to be sent across during a PSK connection.

Return Values:
If successful the call will return SUCCESS.



Parameters:
ctx - a pointer to a wolfssl structure, created using wolfssl.CTX_new().
hint - the hint to send across.

Example:

IntPtr ctx;
int ret;
StringBuffer hint = new StringBuilder (“wolfssl server”);

ret = wolfssl.CTX use psk identity hint (ctx, hint);
if (ret != wolfssl.SUCCESS) ({
// handle error

}

See Also:
CTX set_psk_server_callback
CTX_set_psk_server_callback

Synopsis:
void CTX set_psk_server_callback(IntPtr ctx, wolfssl.psk_delegate psk_cb);

uint psk_delegate(IntPtr ssl, string identity, IntPtr key, uint max_sz);

Description:
This function is used to set the callback function for when performing a PSK handshake.

Return Values:
Does not return anything.

Parameters:
ctx - a pointer to a wolfssl structure, created using wolfssl.CTX_new().

psk_delegate - a pointer to a psk callback function.



Example:

int ret = 0;
IntPtr ctx;
wolfssl.psk delegate psk cb = new wolfssl.psk delegate(my psk server cb);

ret = wolfssl.CTX set psk server callback(ctx, psk cb);

See Also:
CTX use_psk_identity _hint
set_psk_server_callback

set_psk_server_callback

Synopsis:
void set psk_server_callback(IntPtr ctx, wolfssl.psk_delegate psk_cb);

uint psk_delegate(IntPtr ssl, string identity, IntPtr key, uint max_sz);

Description:
This function is used to set the callback function for when performing a PSK handshake.

Return Values:
Does not return anything.

Parameters:
ssl - a pointer to a wolfssl structure, created using wolfssl.new_ssl().
psk_delegate - a pointer to a psk callback function.

Example:

IntPtr ssl;
wolfssl.psk delegate psk cb = new wolfssl.psk delegate(my psk server cb);



wolfssl.set psk server callback(ssl, psk cb);

See Also:
CTX use_psk_identity _hint
CTX _set_psk_server_callback

1.7 Appendix

A list of preprocessor flags and what they do

1.7.1 Removing Features

The following defines can be used to remove features from wolfSSL. This can be
helpful if you are trying to reduce the overall library footprint size. In addition to defining
a NO_<feature-name> define, you can also remove the respective source file as well
from the build (but not the header file).

NO_WOLFSSL_CLIENT removes calls specific to the client and is for a
server-only builds. You should only use this if you want to remove a few calls for
the sake of size.

NO_WOLFSSL_SERVER likewise removes calls specific to the server side.

NO_DES3 removes the use of DES3 encryptions. DES3 is built-in by default
because some older servers still use it and it's required by SSL 3.0.

NO_DH and NO_AES are the same as the two above, they are widely used.
NO_DSA removes DSA since it's being phased out of popular use.

NO_ERROR_STRINGS disables error strings. Error strings are located in
src/internal.c for wolfSSL or wolfcrypt/src/asn.c for wolfCrypt.



NO_HMAC removes HMAC from the build.

NO_MD4 removes MD4 from the build, MD4 is broken and shouldn't be used.
NO_MDS5 removes MD5 from the build.

NO_SHA256 removes SHA-256 from the build.

NO_PSK turns off the use of the pre-shared key extension. It is built-in by
default.

NO_PWDBASED disables password-based key derivation functions such
as PBKDF1, PBKDF2, and PBKDF from PKCS #12.

NO_RC4 removes the use of the ARC4 stream cipher from the build. ARC4 is
built-in by default because it is still popular and widely used.

NO_RABBIT and NO_HC128 remove stream cipher extensions from the build.

NO_SESSION_CACHE can be defined when a session cache is not needed.
This should reduce memory use by nearly 3 kB.

NO_TLS turns off TLS. We don’t recommend turning off TLS.
SMALL_SESSION_CACHE can be defined to limit the size of the SSL session

cache used by wolfSSL. This will reduce the default session cache from 33
sessions to 6 sessions and save approximately 2.5 kB.

1.7.2 Enabling Features Disabled by Default

WOLFSSL_DTLS turns on the use of DTLS, or datagram TLS. This isn't widely
supported or used so it is off by default.

WOLFSSL_RIPEMD enables RIPEMD-160 support.

WOLFSSL_SHA384 enables SHA-384 support.



WOLFSSL_SHA512 enables SHA-512 support.

HAVE_AESCCM enables AES-CCM support.

HAVE_AESGCM enables AES-GCM support.

HAVE_CAMELLIA enables Camellia support.

HAVE_CHACHA enables ChaCha20 support.

HAVE_POLY1305 enables Poly1305 support.

HAVE_ECC enables Elliptical Curve Cryptography (ECC) support.

HAVE_CSHARP turns on configuration options needed for C# wrapper. Will
enable psk and dtls overriding any NO_PSK flag preset.

1.7.3 Customizing or Porting wolfSSL

WOLFSSL_USER_SETTINGS if defined allows a user specific settings file to be
used. The file must be named “user_settings.h” and exist in the include path.
This is included prior to the standard “settings.h” file, so default settings can be
overridden.

NO_INLINE disables the automatic inlining of small, heavily used functions.
Turning this on will slow down wolfSSL and actually make it bigger since these
are small functions, usually much smaller than function call setup/return. You'll
also need to add wolfcrypt/src/misc.c to the list of compiled files if you're not
using autoconf.

NO_DEV_RANDOM disables the use of the default /dev/random random number
generator. If defined, the user needs to write an OS-specific GenerateSeed()
function (found in “wolfcrypt/src/random.c”).

SINGLE_THREADED is a switch that turns off the use of mutexes. wolfSSL
currently only uses one for the session cache. If your use of wolfSSL is always

single threaded you can turn this on.

USER_TICKS allows the user to define their own clock tick function if time(0) is



not wanted. Custom function needs second accuracy, but doesn’t have to be
correlated to EPOCH. See LowResTimer() function in “wolfssl_int.c”.

USER_TIME disables the use of time.h structures in the case that the user wants
(or needs) to use their own. See “wolfcrypt/src/asn.c” for implementation details.
The user will need to define and/or implement XTIME, XGMTIME, and
XVALIDATE_DATE.

1.7.4 Reducing Memory Usage

TFM_TIMING_RESISTANT can be defined when using fast math
(USE_FAST_MATH) on systems with a small stack size. This will get rid of the
large static arrays.

WOLFSSL_SMALL_STACK can be used for devices which have a small stack
size. This increases the use of dynamic memory in wolfcrypt/src/integer.c, but
can lead to slower performance.

1.7.5 Increasing Performance

WOLFSSL_AESNI enables use of AES accelerated operations which are built
into some Intel chipsets. When using this define, the aes_asm.s file must be
added to the wolfSSL build sources.

USE_FAST_MATH switches the big integer library to a faster one that uses
assembly if possible. fastmath will speed up public key operations like RSA, DH,
and DSA. The big integer library is generally the most portable and generally
easiest to get going with, but the negatives to the normal big integer library are
that it is slower and it uses a lot of dynamic memory. Because the stack memory
usage can be larger when using fastmath, we recommend defining
TFM_TIMING_RESISTANT as well when using this option.



