C# Wrapper

Documentation and Users Guide
December 7th 2015, version 1.1

1.0 INTRO

The C# wrapper for wolfSSL is a way for C# developers to easily integrate wolfSSL
TLS/DTLS functionality into their product. It contains wrappers for the functions needed
to open and maintain a TLS or DTLS connection with the option of using PSK.

1.1 Current Status Notes
2.0 INSTALLATION

2.1 Dependencies

It is required to have the wolfSSL DLL library. This is automatically built with the Visual
Studio project wolfssl/wrapper/CSharp/wolfSSL_CSharp.

First is to set up the build option used, click BUILD->Configuration Manager... In the top
left change to prefered Active solution configuration, either DLL Debug or DLL Release
and then select the Active solution platform being built on either 32bit(Win32) or
64bit(x64) machine. In the first screenshot it was built on a 64bit OS.

m wolfSSL_CSharp - Microsoft Visual Studio

Quick Launch (Ctrl+ Q) P - (m] x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
- i A= -] - - P Stat - DLLRele - A _
=
g_ Configuration Manager
o
2 Active solution configuration: Active solution platform:
[DLL Release =) [t - L=
Debug . =
DL Debui fploy):
DLL Release Platform Build Deploy
Release =
<New...» 64 |z|]
<Edit...> 64 a
wolfSSL_CSharp Release b4 =
wolfSSL-DTLS-PSK-Server Release b4 | =
wolfSSL-DTLS-Server Release b4 m
wolfSSL-TLS-PSK-Server Release w4 | Boococe v X
waolfSSL-TLS-Server Release w64 | :
-~
ktop\wolfss
Error List

For a 32bit system it would look like the following screenshot.

harp - Microsoft Visual Studio

Yuick Launch (Ltrl+) M o m U
EW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
- @ W - ~ | P Start ~ DLLRele ~ ﬂ;
-
Configuration Manager
Active solution configuration: Active solution platform:
DLL Debug ~| [win32 -

Project contexts (check the project conf

igurations to build or deploy):

Project

testsuite

wolfssl (wolfSSL\wolfssl)
wolfS5L_CSharp
wolfS5L-DTLS-PSK-Server
wolfS5L-DTLS-Server
wolfS5L-TLS-PSK-Server
wolfS5L-TLS-Server

Configuration Platform Build Deploy
DLL Debug [+] winaz2 [=] = O
DLL Debug Win32 O
Debug Any CPU O
Debug Any CPU O
Debug Any CPU O
Debug Any CPU =
Debug Any CPU

Copyright © 2015 wolfSSL Inc. All rights reserved.

After setting up the build options a preprocessor flag HAVE_CSHARP needs to be
added. These flags can be adjusted by right clicking on wolfssl/wolfssl| project in Visual
Studio. Selecting properties then expanding C/C++ and opening Preprocessor option.
Click the down arrow next to Preprocessor Definitions and select edit.

operty Page

.

Configuration: | Active(DLL Debug) ~| Platform: |Active(d) +| [configuration Manager... |
Sha
Vil > Common Properties Preprocessor Definitions OPENSSL_EXTRA;WOLFSS L_RIPEMD:WGLFSSI._SHASH;NO_PSK:‘
4 Configuration Properties Undefine Preprocessor Definitions
£ | General Undefine All Preprocessor Definitjpns. Dlo
- - ?
B Debugging Ignare Standard Include Paths Preprocessor Definitions
- VC++ Directories Preprocess to a File
3ol -
4 C/Cer Preprocess Suppress Line Numbe WOLESSE SHASIZ
ded General NO_PSK
Ontimization Keep Comments BUILDING_WOLFS5L i
1ud Lo WOLFSSL_DLL £
Preprocessor HAVE_CSHARP =
of Code Generation =
#i Language 4 F
if Precompiled Headers Rheried vl
Output Files WINDLL
Browse Information “UNICODE]
ef Advanced UNICODE
def All Options
#d¢g "
% Command Line
if . e
of > Linker
ef Manifest Tool Inherit from parent or project defaults
if > AML Document Generator
1> Browse Information [oK] [c .]
- Build Events anee
‘3:5 |» Custom Build Step =
e b
#dd b Custom Bmlé Tool Preprocessor Definitions
if b CodeAnalysis Defines a preprocessing symbols for your source file,
< m | »
ef oK] I Cancel] Appl
$#dd
4 ¥

2.2 Building C# wrapper

To build the wolfSSL library, the CSharp wrapper, and examples, click BUILD->Build
Solution. This will create a wolfssl.dll and wolfSSL_CSharp.dll in a created DLL Release
or DLL Debug folder depending on which DLL option was selected. The new folder
created with the build of wolfSSL can be found in the wolfssl/wrapper/CSharp directory.
Note that on 64bit builds it will put this directory into the folder x64.

Q‘_‘wl-

Orgamze LS [=%] Open with... Share with = Mew folder ==« [l @l
e Name i Date modified Type Size Jiai
Bl Desktop || dh2048.pem 4/6/2015 4:24 PM PEM File 2KB
4 Downloads || server-cert.pem 5/8/201511:07 AM PEM File 10 KB
2] Recent Places || server-key.pem 4/6/2015 4:24 PM PEM File 2KB
[testsuite 11/20/2015 10:33 Application 62 KB
= Libraries & testsuite 11/20/201510:33 ... Program Debug D... 387 KB
@ Documents | % wolfssl.dll 11/20/201510:33 ... Application extens... 345 KB
J‘ﬁ Music £ wolfssl 11/20/2015 10:33 Exports Library File 82 KB
[=| Pictures BlE wolfss| 11/20/201510:33 ... Ohbject File Library 136 KB =
E Videos & wolfss| 11/20/201510:33 ... Program Debug D... 1,019 KB
%) wolf55L_CSharp.dll 11/20/201510:33 ... Application extens... 16 KB
1% Computer & wolfS5L_CSharp 11/20/2015 10:33 Program Debug D... 32 KB
&, Local Disk (C) [wolfSSL-DTLS-PSK-Server 11/20/201510:33 ... Application S KB
4 wolfSSL-DTLS-PSK-Server.exe 11/19/20158:51 PM XML Configuratio... 1KB
?! MNetwark & wolfS5L-DTLS-PSK-Server 11/20/201510:33 ... Program Debug D... 14 KB
[wolfSSL-DTLS-Server 11/20/201510:33 ... Application TKB
43 wolfSSL-DTLS-Server.exe 11/19/20158:51 PM XML Configuratio... 1KB B |
& wolfS5L-DTLS-Server 11/20/201510:33 ... Program Debug D... 14 KB
[2] wolfSSL-TLS-PSK-Server 11/20/201510:33 ... Application 8 KB
3 wolfSSL-TLS-PSK-Server.exe 11/19/2015 8:51 PM XML Configuratio... 1KB
B wwunkSSI-TI S-PSK-Senrer 112025 1032 Branram Nehon T 14 KR]
. wolfssl.dll Date medified: 11/20/2015 10:33 AM Date created: 11/20/201510:33 AM
) Application extension Size: 345 KB

3.0 EXAMPLE SERVER

There are a couple of example servers included; TLS, DTLS, and another two with each
using PSK. Building of each example can be done in a similar fashion as above. All
examples will create an exe file to then run, and the server will be bound to 0.0.0.0
allowing any IP to connect. Since allowing any IP to connect a firewall warning could
pop up this is expected and for testing from external connections click allow.

If testing the connection from a linux type system using the C wolfSSL client examples
make sure the library on the linux system has been built with configuration options to
have DTLS and PSK.

When building and testing the example O callbacks the suite used is a static PSK one.
To be able to use static PSK suites wolfSSL will need to be built with the preprocessor
flag WOLFSSL_STATIC_PSK.

4.0 EXTRA

This is a list of some standard ways for using the created DLLs in custom projects other
than provided examples. One way is by placing the created wolfSSL_CSharp.dll and
wolfssl.dll in the directory C:\Windows\system. A second option of changing the
environment variable path is available to allow for the loader to find the wolfssl and
wolfSSL_CSharp DLLs. Finally a third option of just using the existing wolfSSL_CSharp
solution and adding on to it in a similar fashion as the examples.

C# wrapper logging errors can be set up with a function callback being passed to
wolfSSL.SetLogging. An example of this can be seen in wolfSSL-TLS-Server.cs.

Though the project uses preset call backs for reading and writing when a new CTX
structure is created there is the option to set custom callbacks with the
wolfssl.SetlORecv and wolfssl.SetlOSend. These functions require the input of the CTX
structure to set and a function that fulfills the CallbacklORecv_delegate and
CallbacklOSend_delegate requirements.

Client connect has been added but not fully tested the server side was focused on.

5.0 Troubleshooting

e If you get the following error it is likely because of a mismatch in build
architectures.

m wolfss|_wrapper (Debugging) - Microsoft Visual Studio Quick Launch (Ctrl+Q) P -

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP

e - @l

A > = . n _

(RS YOETE IRl wolfSSL-TLS-PSK-Server.cs & wolfSSL-DTLS-PSK-Server.cs & b

No Source Available

The call stack contains only external code.

This thread is stopped with only external code

v | Call stack with external cede

Locals

Locals Watch1

Get general help for this excepticn.

! BadlmageFormatException was unhandled 2 X

Could not load file or assembly ‘wolfssl_wrapper, Version=1.0.00,
Culture=neutral, PublicKeyToken=null' or one of its dependencies. An attempt

was made to load a program with an incorrect fermat. .
an also include other optimized modules which a

Troubleshooting tips:
Make sure you have supplied a correct file path for the assembly.

wal >

Make sure the file image is a valid managed assembly

1

Search for more Help Online...

Exception settings:
[] Break when this exception type is thrown
Actions: 4
View Detail... > 3x
Lang

Copy exception detail to the clipboard

Open exception settings

i QK Continue

Call Stack | Immediate Window

To fix make sure all build configurations are for the same architecture ie x64.

e If the application runs really quick and does not complete a connection check the
path for loading in the certificate and key, also check that HAVE_CSHARP
preprocessor is added to wolfssl.

e If you get the error unable to locate wolfSSL_CSharp.dll make sure to add
reference to the created wolfSSL_CSharp.dll for the project. This can be done by
right clicking on the project and selecting add reference. Then select
solution->projects and chose wolfSSL_CSharp or by installing the created
wolfssl.dll and wolfSSL_CSharp.dlI.

