
wolfSSL Porting Guide

Version 1.9
March 2, 2016

Purpose

This guide provides a reference for developers and engineers porting the wolfSSL
lightweight SSL/TLS library to new embedded platforms, operating systems, or transport
mediums (TCP/IP, bluetooth, etc.). It calls out areas in the wolfSSL codebase which
typically require modification when porting wolfSSL. It should be considered a “guide” and
as such, it is an evolving work. If there is something you find missing, please let us know
and we’ll be happy to add instructions or clarification to the document.

Audience

This guide caters to developers or engineers porting the wolfSSL and wolfCrypt to new
platforms or environments that are not supported by default.

Copyright 2019 wolfSSL Inc. All rights reserved.

Table of Contents
This table of contents includes commentary on when each section needs to be read.
Hopefully, this will expedite the reading process and eliminate unnecessary work.

1. Introduction
2. Porting wolfSSL

2.1 Data Types
Setting the correct data type size for your platform is always important.

2.2 Endianness
Necessary if your platform is a big endian system.

2.3 writev
Necessary if <sys/uio.h> is not available.

2.4 Input / Output
Necessary if a BSD-style socket API is not available, you are using a custom
transport layer or TCP/IP stack, or only want to use static buffers.

2.5 Filesystem
Necessary if file system is not available, standard file system functions are not
available, or you have a custom file system.

2.6 Threading
Necessary if you want to use wolfSSL in a multithreaded environment, or
want to just compile it in single threaded mode.

2.7 Random Seed
Necessary if either /dev/random or /dev/urandom is not available or you want
to integrate into a hardware RNG.

2.8 Memory
Necessary when you don’t have standard memory functions available or are
interested in memory usage differences between optional math libraries.

2.9 Time
Necessary when standard time functions are not available, or you need to
define a custom clock tick function.

2.9 C Standard Library
Necessary when a C standard library is not available, or using a custom one.

2.10 Logging
Necessary when debug messages desired but stderr is unavailable.

2.11 Public Key Operations
Necessary if you want to use your own public key implementation.

2.12 Atomic Record Layer Processing
Necessary if you want to do your own processing of record layers, specifically
MAC/encrypt and decrypt/verify operations.

2.13 Features
Necessary when you want to disable features.

3. Next Steps
3.1 wolfCrypt Test Application

4. Support

Copyright 2019 wolfSSL Inc. All rights reserved.

1. Introduction

Several steps need to be iterated through when getting wolfSSL to run on an embedded
platform. Some of these steps are outlined in Section 2.4 of the wolfSSL Manual.

Apart from steps in Chapter 2 of the wolfSSL Manual, there are areas in the code which may
need porting or modifications in order to accommodate a specific platform. wolfSSL
abstracts many of these areas - attempting to make it as easy as possible to port wolfSSL to
a new platform.

In the ./wolfssl/wolfcrypt/settings.h file, there are several defines specific to different
operating systems, TCP/IP stacks, and chipsets (ex: MBED, FREESCALE_MQX,
MICROCHIP_PIC32, MICRIUM, EBSNET, etc.). There are two main locations to put #defines
when compiling and porting wolfSSL to a new platform:

1. New defines for a Operating System or TCP/IP stack port are typically added to the
settings.h file when a new port of wolfSSL is completed. This provides an easy way
to turn on/off features as well as customize build settings that should be “default” for
that build. New custom defines can be added in this file when doing a port of
wolfSSL to a new platform. We encourage users to contribute ports of wolfSSL back
to the master open source code branch on GitHub. This helps keep wolfSSL up to
date and allows different ports to remain updated as the wolfSSL project improves
and moves forward.

2. For users not wanting to contribute back their changes to wolfSSL proper, or for
users who want to customize the wolfSSL build with additional preprocessor defines,
wolfSSL recommends the use of a custom “user_settings.h” header file. If
WOLFSSL_USER_SETTINGS is defined when compiling the wolfSSL source files,
wolfSSL will automatically include a custom header file called “user_settings.h”.
This header should be created by the user and placed on the include path. This
allows users to maintain one single file for their wolfSSL build, and makes it much
easier to update to newer versions of wolfSSL.

wolfSSL encourages the submission of patches and code changes through either direct email
(info@wolfssl.com), or through GitHub pull request.

2. Porting wolfSSL

2.1 Data Types

Q: When do I need to read this section?
A: Setting the correct data type size for your platform is always important.

Copyright 2019 wolfSSL Inc. All rights reserved.

https://www.wolfssl.com/docs/wolfssl-manual/ch2/
https://www.github.com/wolfssl/wolfssl
mailto:info@wolfssl.com
https://github.com/wolfssl/wolfssl

wolfSSL benefits speed-wise from having a 64-bit type available. Define SIZEOF_LONG
and SIZEOF_LONG_LONG to match the result of sizeof(long) and sizeof(long long)
on your platform. This can be added to a custom define in the settings.h file or to
user_settings.h. For example, in settings.h under a sample define of MY_NEW_PLATFORM:

#ifdef MY_NEW_PLATFORM
#define SIZEOF_LONG 4
#define SIZEOF_LONG_LONG 8
...

#endif

There are two additional data types used by wolfSSL and wolfCrypt, called “word32” and
“word16”. The default type mappings for these are:

#ifndef WOLFSSL_TYPES
#ifndef byte

typedef unsigned char byte;
#endif
typedef unsigned short word16;
typedef unsigned int word32;
typedef byte word24[3];

#endif

“word32” should be mapped to the compiler’s 32-bit type, and “word16” to the compiler’s
16-bit type. If these default mappings are incorrect for your platform, you should define
WOLFSSL_TYPES in settings.h or user_settings.h and assign your own custom typedefs for
word32 and word16.

The fastmath library in wolfSSL uses the “fp_digit” and “fp_word” types. By default these
are mapped in <wolfssl/wolfcrypt/tfm.h> depending on build configuration.

“fp_word” should be twice the size of “fp_digit”. If the default cases do not hold true for
your platform, you should define WOLFSSL_BIGINT_TYPES in settings.h or
user_settings.h and assign your own custom typedefs for fp_word and fp_digit.

wolfSSL does use a 64-bit type when available for some operations. The wolfSSL build tries
to detect and set up the correct underlying data type for word64 based on what
SIZEOF_LONG and SIZEOF_LONG_LONG have been set to. On some platforms that don’t
have a true 64-bit type, where two 32-bit types are used in conjunction, performance can
be slow. To compile out the use of 64-bit types, define NO_64BIT.

2.2 Endianness

Q: When do I need to read this section?
A: Your platform is a big endian system.

Copyright 2019 wolfSSL Inc. All rights reserved.

Is your platform big endian or little endian? wolfSSL defaults to a little endian system. If
your system is big endian, define BIG_ENDIAN_ORDER when building wolfSSL. Example
of setting this in settings.h:

#ifdef MY_NEW_PLATFORM
...
#define BIG_ENDIAN_ORDER
...

#endif

2.3 writev

Q: When do I need to read this section?
A: <sys/uio.h> is not available.

By default, the wolfSSL API makes available wolfSSL_writev() to applications, which
simulates writev() semantics. On systems that don’t have the <sys/uio.h> header
available, define NO_WRITEV to exclude this feature.

2.4 Input / Output

Q: When do I need to read this section?
A: A BSD-style socket API is not available, you are using a custom transport layer or TCP/IP
stack, or only want to use static buffers.

wolfSSL defaults to using a BSD-style socket interface. If your transport layer provides a
BSD socket interface, wolfSSL should integrate into it as-is, unless custom headers are
needed.

wolfSSL provides a custom I/O abstraction layer which allows users to tailor wolfSSL's I/O
functionality to their system. Full details can be found in Section 5.1.2 of the wolfSSL
Manual:
https://wolfssl.com/wolfSSL/Docs-wolfssl-manual-5-portability.html

Simply put, you can define WOLFSSL_USER_IO, then write your own I/O callback
functions using wolfSSL's default EmbedSend() and EmbedReceive() as templates. These
two functions are located in ./src/wolfio.c.

wolfSSL uses dynamic buffers for input and output, which default to 0 bytes. If an input
record is received that is greater in size than the buffer, then a dynamic buffer is
temporarily used to handle the request and then freed.

If you prefer using large, 16kB static buffers which will never need dynamic memory, you
can enable this option by defining LARGE_STATIC_BUFFERS.

Copyright 2019 wolfSSL Inc. All rights reserved.

https://wolfssl.com/wolfSSL/Docs-wolfssl-manual-5-portability.html

If dynamic buffers are used and the user requests an wolfSSL_write() that is bigger than
the buffer size, then a dynamic block up to MAX_RECORD_SIZE is used to send the data.
Users wishing to only send the data in chunks of the current buffer size at maximum, as
defined by RECORD_SIZE, can do this by defining STATIC_CHUNKS_ONLY. When using
this define, RECORD_SIZE defaults to 128 bytes.

2.5 Filesystem

Q: When do I need to read this section?
A: No file system is available, standard file system functions are not available, or you have
a custom file system.

wolfSSL uses the filesystem for loading keys and certificates into the SSL session or context.
wolfSSL also allows loading these from memory buffers. If strictly using memory buffers, a
filesystem is not needed.

You can disable wolfSSL's usage of the filesystem by defining NO_FILESYSTEM when
building the library. This means that certificates and keys will need to be loaded from
memory buffers instead of files. An example of setting this in settings.h:

#ifdef MY_NEW_PLATFORM
...
#define NO_FILESYSTEM
...

#endif

Test key and certificate buffers can be found in the ./wolfssl/certs_test.h header file. These
will match up to corresponding certificates and keys found in the ./certs directory.

The certs_test.h header file can be updated using the ./gencertbuf.pl script if needed.
Inside gencertbuf.pl, there are two arrays: fileList_1024 and fileList_2048. Additional
certificates or keys may be added to the respective array, depending on key size, and must
be in DER format. The above mentioned arrays map a certificate/key file location with the
desired buffer name. After modifying gencertbuf.pl, running it from the wolfSSL root
directory will update the certificate and key buffers in ./wolfssl/certs_test.h:

./gencertbuf.pl

If you would like to use a filesystem other than the default, the filesystem abstraction layer
is located in ./wolfssl/wolfcrypt/wc_port.h. Here you will see filesystem ports for various
platforms including EBSNET, FREESCALE_MQX, and MICRIUM. You can add a custom define
for your platform if needed - allowing you to define file system functions with XFILE,
XFOPEN, XFSEEK, etc. For example, the filesystem layer in wc_port.h for Micrium's µC/OS
(MICRIUM) is as follows:

Copyright 2019 wolfSSL Inc. All rights reserved.

#elif defined(MICRIUM)
#include <fs.h>
#define XFILE FS_FILE*
#define XFOPEN fs_fopen
#define XFSEEK fs_fseek
#define XFTELL fs_ftell
#define XREWIND fs_rewind
#define XFREAD fs_fread
#define XFCLOSE fs_fclose
#define XSEEK_END FS_SEEK_END
#define XBADFILE NULL

2.6 Threading

Q: When do I need to read this section?
A: You want to use wolfSSL in a multithreaded environment, or want to just compile it in
single threaded mode.

If wolfSSL will only be used in a single threaded environment, the wolfSSL mutex layer can
be disabled when compiling wolfSSL by defining SINGLE_THREADED. This will negate the
need to port the wolfSSL mutex layer.

If wolfSSL needs to be used in a multithreaded environment, the wolfSSL mutex layer will
need to be ported to the new environment. The mutex layer can be found in
./wolfssl/wolfcrypt/wc_port.h and ./wolfcrypt/src/wc_port.c. wolfSSL_Mutex will need to
be defined for the new system in wc_port.h and the mutex functions (wc_InitMutex,
wc_FreeMutex, wc_LockMutex and wc_UnLockMutex) in wc_port.c. You can search in
wc_port.h and wc_port.c to see an example for some existing platform port layers (EBSNET,
FREESCALE_MQX, etc.).

2.7 Random Seed

Q: When do I need to read this section?
A: Either /dev/random or /dev/urandom is not available or you want to integrate into a
hardware RNG.

By default, wolfSSL uses /dev/urandom or /dev/random to generate a RNG seed. The
NO_DEV_RANDOM define can be used when building wolfSSL to disable the default
GenerateSeed() function. If this is defined, you need to write a custom GenerateSeed()
function in ./wolfcrypt/src/random.c, specific to your target platform. This allows you to
seed wolfSSL’s PRNG with a hardware-based random entropy source if available.

For examples of how GenerateSeed() needs to be written, reference wolfSSL’s existing
GenerateSeed() implementations in ./wolfcrypt/src/random.c.

Copyright 2019 wolfSSL Inc. All rights reserved.

2.8 Memory

Q: When do I need to read this section?
A: When you don’t have standard memory functions available or are interested in memory
usage differences between optional math libraries.

wolfSSL proper uses both malloc() and free() by default. When using the normal big integer
math library, wolfCrypt will also use realloc().

By default wolfSSL/wolfCrypt use the normal big integer math library, which uses quite a bit
of dynamic memory. When building wolfSSL, the fastmath library can be enabled, which is
both faster and uses no dynamic memory for crypto operations (all on the stack). By using
fastmath, wolfSSL won't need a realloc() implementation at all. As the SSL layer of wolfSSL
still uses some dynamic memory, malloc() and free() are still required.

For a comparison of resource usage (stack/heap) between the big integer math library and
fastmath library, ask us to see our Resource Use document.

To enable fastmath, define USE_FAST_MATH and build in ./wolfcrypt/src/tfm.c instead of
./wolfcrypt/src/integer.c. Since the stack memory can be large when using fastmath, we
recommend defining TFM_TIMING_RESISTANT as well.

If the normal malloc(), free(), and possibly realloc() functions are not available, define
XMALLOC_USER, then provide custom memory function hooks in
./wolfssl/wolfcrypt/types.h specific to the target environment.

Please read section 5.1.1.1 of the wolfSSL Manual for details about using XMALLOC_USER:
https://wolfssl.com/wolfSSL/Docs-wolfssl-manual-5-portability.html

2.9 Time

Q: When do I need to read this section?
A: When standard time functions (time(), gmtime()) are not available, or you need to
specify a custom clock tick function.

By default, wolfSSL uses time(), gmtime(), and ValidateDate(), as specified in
./wolfcrypt/src/asn.c. These are abstracted to XTIME, XGMTIME, and XVALIDATE_DATE. If
the standard time functions, and time.h, are not available, the user can define USER_TIME.
After defining USER_TIME, the user can define their own XTIME, XGMTIME, and
XVALIDATE_DATE functions.

wolfSSL uses time(0) by default for the clock tick function. This is located in ./src/internal.c
inside of the LowResTimer() function.

Copyright 2019 wolfSSL Inc. All rights reserved.

https://wolfssl.com/wolfSSL/Docs-wolfssl-manual-5-portability.html

Defining USER_TICKS allows the user to define their own clock tick function if time(0) is
not wanted. The custom function needs second accuracy, but doesn’t have to be correlated
to EPOCH. See LowResTimer() function in ./src/internal.c for reference.

2.10 C Standard Library

Q: When do I need to read this section?
A: When you don’t have a C standard library available, or have a custom one.

wolfSSL can be built without the C standard library to provide a higher level of portability
and flexibility to developers. When doing so, the user needs to map functions they wish to
use instead of the C standard ones.

Section 7, above, covered memory functions. In addition to memory function abstraction,
wolfSSL also abstracts string function and math functions, where the specific functions are
typically abstracted to a define in the form of X<FUNC>, where <FUNC> is the name of the
function being abstracted.

Please read Section 5.1 of the wolfSSL Manual for details:
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-5-portability.html

2.11 Logging

Q: When do I need to read this section?
A: You want to enable debug messages but don’t have stderr available.

By default, wolfSSL provides debug output through stderr. In order for debug messages to
be enabled, wolfSSL must be compiled with DEBUG_WOLFSSL defined, and
wolfSSL_Debugging_ON() must be called from the application code.
wolfSSL_Debugging_OFF() may be used by the application layer to turn off wolfSSL debug
messages.

For environments which do not have stderr available, or wish to output debug messages
over a different output stream or in a different format, wolfSSL allows applications to
register a logging callback.

Please read Section 8.1 of the wolfSSL Manual for details:
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-8-debugging.html

2.12 Public Key Operations

Q: When do I need to read this section?
A: You want to use your own public key implementation with wolfSSL.

Copyright 2019 wolfSSL Inc. All rights reserved.

https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-5-portability.html
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-8-debugging.html

wolfSSL allows users to write their own public key callbacks which will be called when the
SSL/TLS layer needs to do public key operations. The user can optionally define 6
functions:

1. ECC sign callback
2. ECC verify callback
3. RSA sign callback
4. RSA verify callback
5. RSA encrypt callback
6. RSA decrypt callback

For full details, please read Section 6.4 of the wolfSSL Manual:
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-6-callbacks.html

2.13 Atomic Record Layer Processing

Q: When do I need to read this section?
A: You want to do your own processing of record layers, specifically MAC/encrypt and
decrypt/verify operations.

By default, wolfSSL handles record layer processing for the user using its cryptography
library, wolfCrypt. wolfSSL provides Atomic Record Processing callbacks for users who wish
to have more control over MAC/encrypt and decrypt/verify functionality during the SSL/TLS
connection.

The user will need to define 2 functions:
1. MAC/encrypt callback function
2. Decrypt/verify callback function

For full details, please read Section 6.3 of the wolfSSL Manual:
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-6-callbacks.html

2.14 Features

Q: When do I need to read this section?
A: When you want to disable features.

Features can be disabled when building wolfSSL by using the appropriate defines. For a list
of defines available, please refer to Chapter 2 of the wolfSSL Manual:
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-2-building-wolfssl.html

3. Next Steps

Copyright 2019 wolfSSL Inc. All rights reserved.

https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-6-callbacks.html
https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-6-callbacks.html
https://www.wolfssl.com/docs/wolfssl-manual/ch2/

3.1 wolfCrypt Test Application

After getting wolfSSL proper to build on the target platform, a good next step is to port the
wolfCrypt test application. Running this application on the target system will verify that all
the crypto algorithms are working correctly, using NIST test vectors.

If this step is skipped, and you instead proceed directly to establishing an SSL connection, it
can be more difficult to debug problems caused by underlying crypto operations failing.

The wolfCrypt test application is located in ./wolfcrypt/test/test.c. If an embedded
application has its own main() function, then NO_MAIN_DRIVER must be defined when
compiling ./wolfcrypt/test/test.c. This will allow the application’s main() to call each
cipher/algorithm test individually on its own.

If an embedded device does not have enough resources to run the entire wolfCrypt test
application, individual tests can be broken out of test.c and compiled individually. Please
ensure that correct header files needed for the specific test case are included in the build
when extracting isolated crypto tests from test.c.

4. Support

General support questions may be sent directly to wolfSSL either through email, support
forums, or wolfSSL’s Zendesk ticket tracking system.

Website: https://www.wolfssl.com
Support Email: support@wolfssl.com
Zendesk: https://wolfssl.zendesk.com
Forums: https://www.wolfssl.com/forums

wolfSSL offers several support packages as well as consulting services to help users and
customers port wolfSSL to new environments.

Support Packages: https://www.wolfssl.com/wolfSSL/Support/support_tiers.php
Consulting Services: https://www.wolfssl.com/wolfSSL/wolfssl-consulting.html
General Inquiries: info@wolfssl.com

Document Revision Log

Version Date Notes Person

1.0 11/13/2012 Document Created Chris Conlon

Copyright 2019 wolfSSL Inc. All rights reserved.

https://www.wolfssl.com
mailto:support@wolfssl.com
https://wolfssl.zendesk.com
https://www.wolfssl.com/forums
https://www.wolfssl.com/wolfSSL/Support/support_tiers.php
https://www.wolfssl.com/wolfSSL/wolfssl-consulting.html
mailto:info@wolfssl.com

1.2 10/24/2013 Content Update Chris Conlon

1.4 11/06/2013 Name change, clarity on filesystem, RNG, memory usage Chris Conlon

1.5 12/23/2014 Content cleanup Chris Conlon

1.6 05/05/2015 Update URLs Chris Conlon

1.7 10/02/2015 Update CTaoCrypt to wolfCrypt references Chris Conlon

1.8 01/19/2016 Document user_settings.h Chris Conlon

1.9 03/02/2016 Expand data types, add Consulting Services Chris Conlon

Copyright 2019 wolfSSL Inc. All rights reserved.

