

Implementation and Performance of AES-NI in CyaSSL

Embedded SSL

In 2010, Intel introduced the 32nm Intel® microarchitecture code name Westmere. With

this introduction, Intel announced support for a new set of hardware-based Advanced

Encryption Standard (AES) instructions. These instructions, named “AES-NI” (or AES “New

Instructions”) are composed of six individual instructions in total, offering hardware

accelerated AES routines to both consumers and developers worldwide.

1

Contents

Implementation and Performance of AES-NI in CyaSSL Embedded SSL 0

Contents .. 1

Introduction .. 2

Audience .. 2

CyaSSL Embedded SSL Library .. 2

Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI) Overview 4

System Setup and Configuration.. 5

Software Setup ... 6

Determination of library support for Intel® AES-NI .. 7

Performance Tests ... 7

Conclusion ... 9

Terminology and Reference .. 10

About the Authors ... 10

Notices ... 12

2

Introduction

In 2010, Intel introduced the 32nm Intel® microarchitecture code name Westmere. With

this introduction, Intel announced support for a new set of hardware-based Advanced

Encryption Standard (AES) instructions. These instructions, named Intel® Advanced

Encryption Standard New Instructions (Intel® AES-NI) are composed of six individual

instructions, offering hardware accelerated AES routines to both consumers and developers

worldwide.

This paper, authored by yaSSL, provides a brief overview of the Intel AES-NI instructions and

demonstrates the performance gains realized when yaSSL used Intel AES-NI in place of a

more traditional software-only based AES implementation. The CyaSSL embedded SSL

library* developed by yaSSL, is used as a test bed to perform the comparison, as it can be

built with either traditional AES or AES-NI support at compile time. As a secondary goal to

demonstrating Intel AES-NI performance, this paper explains how to determine if a pre-built

SSL library (static or shared) offers built-in support for the Intel Advanced Encryption

Standard New Instructions.

Audience

This paper is intended for software developers and systems administrators. It can be used to

understand the performance benefit of using new instructions in place of a standard

software-based AES implementation and will introduce the benefits of using a small,

lightweight implementation of SSL such as CyaSSL on platforms ranging from embedded

devices to enterprise cloud servers with millions of active SSL connections.

CyaSSL Embedded SSL Library

The CyaSSL embedded SSL library is a lightweight SSL/TLS library written in the C

programming language. It is mainly targeted at embedded and RTOS environments –

3

primarily because of its small size, speed, and feature set – but is commonly used to secure

desktop and enterprise environments as well because if its scalability, royalty-free pricing

model, and excellent cross-platform support.

CyaSSL supports industry SSL standards up to the current TLS 1.2 level, offers very small

per-session runtime memory usage, progressive ciphers, several abstraction layers, and is

typically up to 20 times smaller than OpenSSL. It offers users a full list of features including

an OpenSSL compatibility layer, DTLS, OCSP, and CRL support, SSL inspection capabilities,

x509 certificate generation, and has support for client authentication. Footprint sizes are

typically 30-100kB for a fully-featured TLS 1.2 compliant client and server, depending on

build options and operating environment, and runtime memory usage is between 3-36kB

per SSL session. With memory usages kept to a minimum, CyaSSL is perfect for adding

secure communication to resource constrained embedded devices. It is also ideal for use in

large-scale enterprise environments where it can help reduce the number of resources

needed (translating to fewer machines) to handle high loads of concurrent SSL connections.

As a leader in the embedded security industry, yaSSL provides customers with open source

products that are feature-rich, highly portable, optimized for resource-constrained

environments, and backed by a very dedicated and responsive support and development

team. yaSSL products are designed to offer optimal embedded and enterprise performance,

rapid integration into existing applications and platforms, the ability to leverage hardware

cryptography solutions such as Intel's AES-NI, and support for the most current standards.

All products are designed for ease-of-use with clean and simple APIs and are backed by a

company with a proven track record in the software and communication security industries.

CyaSSL is dual licensed under both the GPLv2 (http://www.gnu.org/licenses/gpl-2.0.html) as

well as a standard commercial license. GPLv2-licensed versions of CyaSSL, as well as

documentation and examples, may be downloaded directly from the yaSSL website

(www.yassl.com).

4

Intel® Advanced Encryption Standard New Instructions (Intel® AES-

NI) Overview

Intel AES-NI offers full hardware support for data encryption and decryption using the

Advanced Encryption Standard. Four of the instructions support AES encryption and

decryption while two support AES key expansion.

AES is a symmetric key algorithm, meaning that the same key is used for both encryption

and decryption. It was first announced by the National Institute of Standards (NIST) in FIPS

PUB 197, then went through a standardization and algorithm selection process, finally

becoming a United States federal government standard in 2002.

Intel AES-NI (as well as standard AES itself) has the flexibility to support key lengths of 128,

192, and 256 bits by processing the data block of plaintext in 10, 12, or 14 rounds of

redefined transformations respectively. Each round performs a number of operations on the

input block, which is then fed into the next round as input. Because the instructions are

hardware-based, they offer a significant increase in performance compared to current

software implementations of AES.

Beyond improving performance, these new AES instructions provide important security

benefits. By running in data-independent time and not using tables, they help in eliminating

the major timing and cache-based attacks that threaten table-based software

implementations of AES. In addition, these instructions make AES simple to implement, with

reduced code size – thus helping reduce the risk of the inadvertent introduction of security

flaws which lead to difficult-to-detect side channel attacks.

The six Intel AES-NI instructions used to accelerate symmetric block encryption/decryption

of data are listed below.

 AESENC and AESENCLAST - perform AES encryption, with AESENC performing a

single round of encryption and AESENCLAST performing the final round of

encryption on the data block. Each instruction groups several operations into a

single instruction, including ShiftRows, SubBytes, and MixColumns.

5

 AESDEC and AESDECLAST – perform AES decryption, with AESDEC performing a

single round of decryption and AESDECLAST performing the final round of

decryption on the data block. These instructions encapsulate the InvShiftRows,

InvSubBytes, and InvMixColumns operations.

 AESIMC – easily allows round keys to be converted into a usable form for decryption

using the Equivalent Inverse Cipher.

 AESKEYGENASSIST – used for the generation of round keys for AES

encryption/decryption routines.

For a complete description of the AES-NI instructions, please refer to section 12.13 in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1, 2A,

2B, 2C, 3A, 3B and 3C (http://download.intel.com/products/processor/manual/325462.pdf).

System Setup and Configuration

The benchmarks and comparisons in this document were generated using the system and

hardware setup as explained in Table 1, below.

All software tests in this paper revolve around CyaSSL*. SSL is a very crypto-intensive

protocol. As such, CyaSSL contains the underlying CTaoCrypt cryptography library that

provides cryptography operations supporting SSL/TLS. CTaoCrypt offers both a traditional

software-based AES implementation as well as the ability to leverage Intel’s AES-NI.

Included in the CyaSSL download is a CTaoCrypt benchmark utility. This utility is the tool

used to measure AES performance on the test system. After downloading and building

CyaSSL, the benchmark utility is located at “<cyassl_root>/ctaocrypt/benchmark/benchmark”,

under the main CyaSSL root directory location.

6

Table 1: Hardware Components

Component Details

Test Hardware Intel Core i7, 2.2 GHz, 8 GB RAM, 500 GB HDD

Operating System Ubuntu* Server 12.04 LTS 64 bit

Library / Application Software CyaSSL 2.3.0

Benchmark Tools CTaoCrypt benchmark utility

Software Setup

CyaSSL can be downloaded from the yaSSL website under the GPLv2 license. For commercial

licenses, please contact yaSSL directly.

http://yassl.com/yaSSL/download/downloadForm.php

There are several steps required to build the CyaSSL library and supporting test software. By

default, CyaSSL uses the autoconf system to configure and build the library. For the

following tests a baseline build was compiled from the terminal as follows. This

configuration will build CyaSSL with the default software-based AES implementation.

% cd cyassl-2.3.0

% ./configure

% make

% make install

The baseline test suite is executed as follows and should confirm a valid build of the

application and library. The test suite runs fifteen cryptography tests in addition to

client/server SSL tests, unit tests, and cipher suite tests. All tests should pass on a

successfully compiled CyaSSL package.

% make test

To build CyaSSL with the new AES-NI instructions, repeat the above steps but modify the

configure command to enable Intel AES-NI support by adding the “—enable-aesni”

configure option.

http://yassl.com/yaSSL/download/downloadForm.php

7

% cd cyassl-2.3.0

% make clean

% ./configure --enable-aesni

% make

% make install

Determination of library support for Intel® AES-NI

For many developers who are using third party SSL libraries, the developer may not know if

the library explicitly supports AES-NI. Below is a method for quickly determining if Intel

AES-NI is enabled in a compiled SSL/TLS library. In the case of the CyaSSL library built in the

previous section, we can see that CyaSSL has been built with AES-NI support from the

disassembly and grep steps below.

% cd cyassl-2.3.0/src/.libs

% objdump -D libcyassl.so | grep AESENC

% objdump -D libcyassl.so | grep AESDEC

% objdump -D libcyassl.so | grep AESDECLAST

% objdump -D libcyassl.so | grep AESENCLAST

% objdump -D libcyassl.so | grep AESIMC

The above commands are issued on a shared library (.so extension). If an SSL library has

been built as a static library (.a extension), the steps to check for AES-NI implementation

would be the same, for example:

% objdump -D libcyassl.a | grep AESENC

Performance Tests

To test the AES performance improvement gained in CyaSSL when enabling Intel AES-NI,

several tests were run using the CTaoCrypt benchmark application. To run the benchmark

application, issue the following command from the CyaSSL root directory:

% ./ctaocrypt/benchmark/benchmark

8

Typical benchmark output looks similar to:

AES 5 megs took 0.029 seconds, 172.82 MB/s

ARC4 5 megs took 0.020 seconds, 246.03 MB/s

RABBIT 5 megs took 0.014 seconds, 368.00 MB/s

3DES 5 megs took 0.236 seconds, 21.16 MB/s

MD5 5 megs took 0.014 seconds, 368.70 MB/s

SHA 5 megs took 0.022 seconds, 226.42 MB/s

SHA-256 5 megs took 0.045 seconds, 110.39 MB/s

RSA 2048 encryption took 0.73 milliseconds, avg over 100 iterations

RSA 2048 decryption took 4.02 milliseconds, avg over 100 iterations

DH 2048 key generation 1.10 milliseconds, avg over 100 iterations

DH 2048 key agreement 1.75 milliseconds, avg over 100 iterations

For comparing AES performance, the only test focused on is the AES test in the benchmark

tests (shown in bold above). The CTaoCrypt benchmark application was run 10 consecutive

times for both standard AES and AES-NI. The results of these tests were averaged together

for AES and AES-NI and the results have been collected in Figure 1, below.

The AES tests performed by the CTaoCrypt benchmark application utilized AES in CBC

mode, doing straight AES encryption. To most accurately measure AES performance, the

individual algorithm performance was measured separately from SSL/TLS communication.

9

Figure 1: Performance of AES vs. Intel AES-NI in CyaSSL

Looking at the results in Figure 1, we see that by building CyaSSL with Intel AES-NI support,

AES-CBC performance is over 3.3 times faster than using traditional software-based AES

when doing direct encryption.

Conclusion

By enabling Intel AES-NI in a given application or library, users are able to see a substantial

performance increase in AES operations. The performance increase gained when using Intel

AES-NI combined with the reduced risk of security attacks makes an arguable point to

enable Intel AES-NI on production environments of all types. As the CyaSSL embedded SSL

library provides support for both traditional software-based AES as well as Intel’s AES-NI,

and offers a very easy to work with license model, users are able to effortlessly test the

potential performance increase on their platform with CyaSSL. With the correct platform

and configuration, users should be able to see a significant performance increase when

using AES-NI over standard AES.

170.939

579.949

0

100

200

300

400

500

600

700

AES AES-NI

M
B

 /
 s

e
c.

Performance of Standard AES vs. Intel AES-NI
CyaSSL Embedded SSL Library, AES-CBC mode

10

Terminology and Reference

Term Description

AES Advanced Encryption Standard

(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)

AES-NI Advanced Encryption Standard New Instructions

(http://download.intel.com/products/processor/manual/325462.pdf, Section 12.13)

SSL / TLS Secure Sockets Layer / Transport Layer Security

(http://tools.ietf.org/html/rfc5246)

CyaSSL CyaSSL Embedded SSL Library

(http://yassl.com/yaSSL/Products-cyassl.html)

About the Authors

Robert Chesebrough is a technical analyst in the Partner Experience

team with Developer Relations Division, and is responsible for

bringing new security related content to the Intel software developer

community. He has been a contributing courseware developer and

instructor for Intel Academic Community for over 8 years. Prior this

role, Robert was a senior technical consulting engineer with the

compiler marketing and technical support group in Intel’s Software

Products division. He authored the “Intel® Compiler Black-Belt Users

Guide to undocumented switches". He holds a BS in Physics from the

University of New Mexico and has been a software developer for the

US Department of Energy, Sandia National Labs and Los Alamos

National Labs beginning in the early 1980’s and also in the in the

aerospace industry at SBS technologies in the late 1990’s. He is

married and has two children.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://tools.ietf.org/html/rfc5246
http://yassl.com/yaSSL/Products-cyassl.html
http://software.intel.com/en-us/profile/336102/

11

Chris Conlon is a software developer at yaSSL. Holding a Bachelor of

Science in Computer Science from Montana State University, he

works to find a balance between outdoor adventures and computing.

Chris enjoys continually learning and strives to bring new and helpful

things to the technology community. He has focused on embedded

security with yaSSL for the past 2 years, working with products

including the CyaSSL embedded SSL library and the yaSSL Embedded

Web Server.

http://www.yassl.com

12

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly,

in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION

CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,

HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS'

FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL

INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR

NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF

THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves

these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from

future changes to them. The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your

product order.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results

to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in

this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar

performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and

reflect performance of systems available for purchase.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be

obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, the Intel logo, VTune, Cilk and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others

Copyright© 2012 Intel Corporation. All rights reserved.

http://www.intel.com/benchmarks
http://www.intel.com/design/literature.htm

13

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please

refer to the applicable product User and Reference Guides for more information regarding the specific

instruction sets covered by this notice.

Notice revision #20110804

