Skip to content

Targets

This chapter describes configuration of supported targets.

Supported Targets

STM32F4

Example 512KB partitioning on STM32-F407

The example firmware provided in the test-app is configured to boot from the primary partition starting at address 0x20000. The flash layout is provided by the default example using the following configuration in target.h:

#define WOLFBOOT_SECTOR_SIZE              0x20000
#define WOLFBOOT_PARTITION_SIZE           0x20000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS   0x20000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x40000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS   0x60000

This results in the following partition configuration:

example partitions

This configuration demonstrates one of the possible layouts, with the slots aligned to the beginning of the physical sector on the flash.

The entry point for all the runnable firmware images on this target will be 0x20100, 256 Bytes after the beginning of the first flash partition. This is due to the presence of the firmware image header at the beginning of the partition, as explained more in details in Firmware image

In this particular case, due to the flash geometry, the swap space must be as big as 128KB, to account for proper sector swapping between the two images.

On other systems, the SWAP space can be as small as 512B, if multiple smaller flash blocks are used.

More information about the geometry of the flash and in-application programming (IAP) can be found in the manufacturer manual of each target device.

STM32F4 Programming

st-flash write factory.bin 0x08000000

STM32F4 Debugging

  1. Start GDB server

OpenOCD: openocd --file ./config/openocd/openocd_stm32f4.cfg OR ST-Link: st-util -p 3333

  1. Start GDB Client
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x20100
mon reset init
b main
c

STM32L4

Example 1MB partitioning on STM32L4

  • Sector size: 4KB
  • Wolfboot partition size: 40 KB
  • Application partition size: 488 KB
#define WOLFBOOT_SECTOR_SIZE                 0x1000   /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS      0x0800A000
#define WOLFBOOT_PARTITION_SIZE              0x7A000  /* 488 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS    0x08084000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS      0x080FE000

STM32L5

Scenario 1: TrustZone Enabled

Example Description

The implementation shows how to switch from secure application to non-secure application, thanks to the system isolation performed, which splits the internal Flash and internal SRAM memories into two halves: - the first half for secure application - the second half for non-secure application

Hardware and Software environment

  • This example runs on STM32L562QEIxQ devices with security enabled (TZEN=1).
  • This example has been tested with STMicroelectronics STM32L562E-DK (MB1373)
  • User Option Bytes requirement (with STM32CubeProgrammer tool - see below for instructions)
TZEN = 1                            System with TrustZone-M enabled
DBANK = 1                           Dual bank mode
SECWM1_PSTRT=0x0  SECWM1_PEND=0x7F  All 128 pages of internal Flash Bank1 set as secure
SECWM2_PSTRT=0x1  SECWM2_PEND=0x0   No page of internal Flash Bank2 set as secure, hence Bank2 non-secure
  • NOTE: STM32CubeProgrammer V2.3.0 is required (v2.4.0 has a known bug for STM32L5)

How to use it

  1. cp ./config/examples/stm32l5.config .config
  2. make TZEN=1
  3. Prepare board with option bytes configuration reported above
    • STM32_Programmer_CLI -c port=swd mode=hotplug -ob TZEN=1 DBANK=1
    • STM32_Programmer_CLI -c port=swd mode=hotplug -ob SECWM1_PSTRT=0x0 SECWM1_PEND=0x7F SECWM2_PSTRT=0x1 SECWM2_PEND=0x0
  4. flash wolfBoot.bin to 0x0c00 0000
    • STM32_Programmer_CLI -c port=swd -d ./wolfboot.bin 0x0C000000
  5. flash .\test-app\image_v1_signed.bin to 0x0804 0000
    • STM32_Programmer_CLI -c port=swd -d ./test-app/image_v1_signed.bin 0x08040000
  6. RED LD9 will be on

  7. NOTE: STM32_Programmer_CLI Default Locations

  8. Windows: C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_CLI.exe
  9. Linux: /usr/local/STMicroelectronics/STM32Cube/STM32CubeProgrammer/bin/STM32_Programmer_CLI
  10. Mac OS/X: /Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/STM32_Programmer_CLI

Scenario 2: Trustzone Disabled

Example Description

The implementation shows how to use STM32L5xx in DUAL_BANK mode, with TrustZone disabled. The DUAL_BANK option is only available on this target when TrustZone is disabled (TZEN = 0).

The flash memory is segmented into two different banks:

  • Bank 0: (0x08000000)
  • Bank 1: (0x08040000)

Bank 0 contains the bootloader at address 0x08000000, and the application at address 0x08040000. When a valid image is available at the same offset in Bank 1, a candidate is selected for booting between the two valid images. A firmware update can be uploaded at address 0x08048000.

The example configuration is available in /config/examples/stm32l5-nonsecure-dualbank.config.

To run flash ./test-app/image.bin to 0x08000000. - STM32_Programmer_CLI -c port=swd -d ./test-app/image.bin 0x08000000

Or program each partition using: 1. flash wolfboot.bin to 0x08000000: - STM32_Programmer_CLI -c port=swd -d ./wolfboot.elf 2. flash wolfBoot.bin to 0x0c00 0000 - STM32_Programmer_CLI -c port=swd -d ./test-app/image_v1_signed.bin 0x08008000

RED LD9 will be on indicating successful boot ()

Debugging

Use make DEBUG=1 and reload firmware.

  • STM32CubeIDE v.1.3.0 required
  • Run the debugger via:

Linux:

ST-LINK_gdbserver -d -cp /opt/st/stm32cubeide_1.3.0/plugins/com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.linux64_1.3.0.202002181050/tools/bin -e -r 1 -p 3333`

Max OS/X:

sudo ln -s /Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-gdb-server.macos64_1.6.0.202101291314/tools/bin/native/mac_x64/libSTLinkUSBDriver.dylib /usr/local/lib/libSTLinkUSBDriver.dylib

/Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-gdb-server.macos64_1.6.0.202101291314/tools/bin/ST-LINK_gdbserver -d -cp ./Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.macos64_1.6.0.202101291314/tools/bin -e -r 1 -p 3333
  • Connect with arm-none-eabi-gdb

wolfBoot has a .gdbinit to configure

arm-none-eabi-gdb
add-symbol-file test-app/image.elf
mon reset init

STM32U5

Scenario 1: TrustZone Enabled

Example Description

The implementation shows how to switch from secure application to non-secure application, thanks to the system isolation performed, which splits the internal Flash and internal SRAM memories into two halves: - the first half for secure application - the second half for non-secure application

Hardware and Software environment

  • This example runs on STM32U585AII6Q devices with security enabled (TZEN=1).
  • This example has been tested with STMicroelectronics B-U585I-IOT02A (MB1551)
  • User Option Bytes requirement (with STM32CubeProgrammer tool - see below for instructions)
TZEN = 1                            System with TrustZone-M enabled
DBANK = 1                           Dual bank mode
SECWM1_PSTRT=0x0  SECWM1_PEND=0x7F  All 128 pages of internal Flash Bank1 set as secure
SECWM2_PSTRT=0x1  SECWM2_PEND=0x0   No page of internal Flash Bank2 set as secure, hence Bank2 non-secure
  • NOTE: STM32CubeProgrammer V2.8.0 or newer is required

How to use it

  1. cp ./config/examples/stm32u5.config .config
  2. make TZEN=1
  3. Prepare board with option bytes configuration reported above
    • STM32_Programmer_CLI -c port=swd mode=hotplug -ob TZEN=1 DBANK=1
    • STM32_Programmer_CLI -c port=swd mode=hotplug -ob SECWM1_PSTRT=0x0 SECWM1_PEND=0x7F SECWM2_PSTRT=0x1 SECWM2_PEND=0x0
  4. flash wolfBoot.bin to 0x0c00 0000
    • STM32_Programmer_CLI -c port=swd -d ./wolfboot.bin 0x0C000000
  5. flash .\test-app\image_v1_signed.bin to 0x0804 0000
    • STM32_Programmer_CLI -c port=swd -d./test-app/image_v1_signed.bin 0x08100000`
  6. RED LD9 will be on

  7. NOTE: STM32_Programmer_CLI Default Locations

  8. Windows: C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_CLI.exe
  9. Linux: /usr/local/STMicroelectronics/STM32Cube/STM32CubeProgrammer/bin/STM32_Programmer_CLI
  10. Mac OS/X: /Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/STM32_Programmer_CLI

Scenario 2: TrustZone Disabled

Example Description

The implementation shows how to use STM32U5xx in DUAL_BANK mode, with TrustZone disabled. The DUAL_BANK option is only available on this target when TrustZone is disabled (TZEN = 0).

The flash memory is segmented into two different banks:

  • Bank 0: (0x08000000)
  • Bank 1: (0x08100000)

Bank 0 contains the bootloader at address 0x08000000, and the application at address 0x08100000. When a valid image is available at the same offset in Bank 1, a candidate is selected for booting between the two valid images. A firmware update can be uploaded at address 0x08108000.

The example configuration is available in config/examples/stm32u5-nonsecure-dualbank.config.

To run flash ./test-app/image.bin to 0x08000000. - STM32_Programmer_CLI -c port=swd -d ./test-app/image.bin 0x08000000

Or program each partition using: 1. flash wolfboot.bin to 0x08000000: - STM32_Programmer_CLI -c port=swd -d ./wolfboot.elf 2. flash image_v1_signed.bin to 0x08008000 - STM32_Programmer_CLI -c port=swd -d ./test-app/image_v1_signed.bin 0x08008000

RED LD9 will be on indicating successful boot ()

Debugging

Use make DEBUG=1 and reload firmware.

  • STM32CubeIDE v.1.7.0 required
  • Run the debugger via:

Linux:

ST-LINK_gdbserver -d -cp /opt/st/stm32cubeide_1.3.0/plugins/com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.linux64_1.3.0.202002181050/tools/bin -e -r 1 -p 3333`

Max OS/X:

sudo ln -s /Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-gdb-server.macos64_1.6.0.202101291314/tools/bin/native/mac_x64/libSTLinkUSBDriver.dylib /usr/local/lib/libSTLinkUSBDriver.dylib

/Applications/STM32CubeIDE.app/Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-gdb-server.macos64_1.6.0.202101291314/tools/bin/ST-LINK_gdbserver -d -cp ./Contents/Eclipse/plugins/com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.macos64_1.6.0.202101291314/tools/bin -e -r 1 -p 3333

Win:

ST-LINK_gdbserver -d -cp C:\ST\STM32CubeIDE_1.7.0\STM32CubeIDE\plugins\com.st.stm32cube.ide.mcu.externaltools.cubeprogrammer.win32_2.0.0.202105311346\tools\bin -e -r 1 -p 3333`
  • Connect with arm-none-eabi-gdb

wolfBoot has a .gdbinit to configure

arm-none-eabi-gdb
add-symbol-file test-app/image.elf
mon reset init

STM32L0

Example 192KB partitioning on STM32-L073

This device is capable of erasing single flash pages (256B each).

However, we choose to use a logic sector size of 4KB for the swaps, to limit the amount of writes to the swap partition.

The proposed geometry in this example target.h uses 32KB for wolfBoot, and two partitions of 64KB each, leaving room for up to 8KB to use for swap (4K are being used here).

#define WOLFBOOT_SECTOR_SIZE                 0x1000   /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS      0x8000
#define WOLFBOOT_PARTITION_SIZE              0x10000 /* 64 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS    0x18000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS      0x28000

STM32L0 Building

Use make TARGET=stm32l0. The option CORTEX_M0 is automatically selected for this target.

STM32G0

Supports STM32G0x0x0/STM32G0x1.

Example 128KB partitioning on STM32-G070:

  • Sector size: 2KB
  • Wolfboot partition size: 32KB
  • Application partition size: 44 KB
#define WOLFBOOT_SECTOR_SIZE                 0x800   /* 2 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS      0x08008000
#define WOLFBOOT_PARTITION_SIZE              0xB000  /* 44 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS    0x08013000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS      0x0801E000

Building STM32G0

Reference configuration (see /config/examples/stm32g0.config. You can copy this to wolfBoot root as .config: cp ./config/examples/stm32g0.config .config. To build you can use make.

The TARGET for this is stm32g0: make TARGET=stm32g0. The option CORTEX_M0 is automatically selected for this target. The option NVM_FLASH_WRITEONCE=1 is mandatory on this target, since the IAP driver does not support multiple writes after each erase operation.

This target also supports secure memory protection on the bootloader region using the FLASH_CR:SEC_PROT and FLASH_SECT:SEC_SIZE registers. This is the number of 2KB pages to block access to from the 0x8000000 base address.

STM32_Programmer_CLI -c port=swd mode=hotplug -ob SEC_SIZE=0x10

For RAMFUNCTION support (required for SEC_PROT) make sure RAM_CODE=1.

Compile requirements: make TARGET=stm32g0 NVM_FLASH_WRITEONCE=1

Debugging STM32G0

The output is a single factory.bin that includes wolfboot.bin and test-app/image_v1_signed.bin combined together. This should be programmed to the flash start address 0x08000000.

Flash using the STM32CubeProgrammer CLI:

STM32_Programmer_CLI -c port=swd -d factory.bin 0x08000000

STM32G0 Debugging

Use make DEBUG=1 and program firmware again.

Start GDB server on port 3333:

ST-LINK_gdbserver -d -e -r 1 -p 3333
OR
st-util -p 3333

wolfBoot has a .gdbinit to configure GDB

arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08008100
mon reset init

STM32WB55

Example partitioning on Nucleo-68 board:

  • Sector size: 4KB
  • Wolfboot partition size: 32 KB
  • Application partition size: 128 KB
#define WOLFBOOT_SECTOR_SIZE                 0x1000   /* 4 KB */
#define WOLFBOOT_PARTITION_BOOT_ADDRESS      0x8000
#define WOLFBOOT_PARTITION_SIZE              0x20000 /* 128 KB */
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS    0x28000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS      0x48000

STM32WB55 Building

Use make TARGET=stm32wb.

The option NVM_FLASH_WRITEONCE=1 is mandatory on this target, since the IAP driver does not support multiple writes after each erase operation.

Compile with:

make TARGET=stm32wb NVM_FLASH_WRITEONCE=1

STM32WB55 with OpenOCD

openocd --file ./config/openocd/openocd_stm32wbx.cfg

telnet localhost 4444
reset halt
flash write_image unlock erase factory.bin 0x08000000
flash verify_bank 0 factory.bin
reset
git clone https://github.com/stlink-org/stlink.git
cd stlink
cmake .
make
sudo make install
st-flash write factory.bin 0x08000000

# Start GDB server
st-util -p 3333

STM32WB55 Debugging

Use make DEBUG=1 and reload firmware.

wolfBoot has a .gdbinit to configure

arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08008100
mon reset init

SiFive HiFive1 RISC-V

Features

  • E31 RISC-V 320MHz 32-bit processor
  • Onboard 16KB scratchpad RAM
  • External 4MB QSPI Flash

Default Linker Settings

  • FLASH: Address 0x20000000, Len 0x6a120 (424 KB)
  • RAM: Address 0x80000000, Len 0x4000 (16 KB)

Stock bootloader

Start Address: 0x20000000 is 64KB. Provides a "double tap" reset feature to halt boot and allow debugger to attach for reprogramming. Press reset button, when green light comes on press reset button again, then board will flash red.

Application Code

Start Address: 0x20010000

wolfBoot configuration

The default wolfBoot configuration will add a second stage bootloader, leaving the stock "double tap" bootloader as a fallback for recovery. Your production implementation should replace this and partition addresses in target.h will need updated, so they are 0x10000 less.

To set the Freedom SDK location use FREEDOM_E_SDK=~/src/freedom-e-sdk.

For testing wolfBoot here are the changes required:

  1. Makefile arguments:
    • ARCH=RISCV
    • TARGET=hifive1
    make ARCH=RISCV TARGET=hifive1 RAM_CODE=1 clean
    make ARCH=RISCV TARGET=hifive1 RAM_CODE=1
If using the `riscv64-unknown-elf-` cross compiler you can add `CROSS_COMPILE=riscv64-unknown-elf-` to your `make` or modify `arch.mk` as follows:
     ifeq ($(ARCH),RISCV)
    -  CROSS_COMPILE:=riscv32-unknown-elf-
    +  CROSS_COMPILE:=riscv64-unknown-elf-
  1. include/target.h

Bootloader Size: 0x10000 (64KB) Application Size 0x40000 (256KB) Swap Sector Size: 0x1000 (4KB)

#define WOLFBOOT_SECTOR_SIZE                 0x1000
#define WOLFBOOT_PARTITION_BOOT_ADDRESS      0x20020000

#define WOLFBOOT_PARTITION_SIZE              0x40000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS    0x20060000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS      0x200A0000

Build Options

  • To use ECC instead of ED25519 use make argument SIGN=ECC256
  • To output wolfboot as hex for loading with JLink use make argument wolfboot.hex

Loading

Loading with JLink:

JLinkExe -device FE310 -if JTAG -speed 4000 -jtagconf -1,-1 -autoconnect 1
loadbin factory.bin 0x20010000
rnh

Debugging

Debugging with JLink:

In one terminal: JLinkGDBServer -device FE310 -port 3333

In another terminal:

riscv64-unknown-elf-gdb wolfboot.elf -ex "set remotetimeout 240" -ex "target extended-remote localhost:3333"
add-symbol-file test-app/image.elf 0x20020100

STM32F7

The STM32-F76x and F77x offer dual-bank hardware-assisted swapping. The flash geometry must be defined beforehand, and wolfBoot can be compiled to use hardware assisted bank-swapping to perform updates.

Example 2MB partitioning on STM32-F769:

  • Dual-bank configuration

BANK A: 0x08000000 to 0x080FFFFFF (1MB) BANK B: 0x08100000 to 0x081FFFFFF (1MB)

  • WolfBoot executes from BANK A after reboot (address: 0x08000000)
  • Boot partition @ BANK A + 0x20000 = 0x08020000
  • Update partition @ BANK B + 0x20000 = 0x08120000
  • Application entry point: 0x08020100
#define WOLFBOOT_SECTOR_SIZE              0x20000
#define WOLFBOOT_PARTITION_SIZE           0x40000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS   0x08020000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x08120000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS   0x0   /* Unused, swap is hw-assisted */

Build Options

To activate the dual-bank hardware-assisted swap feature on STM32F76x/77x, use the DUALBANK_SWAP=1 compile time option. Some code requires to run in RAM during the swapping of the images, so the compile-time option RAMCODE=1 is also required in this case.

Dual-bank STM32F7 build can be built using:

make TARGET=stm32f7 DUALBANK_SWAP=1 RAM_CODE=1

Loading the firmware

To switch between single-bank (1x2MB) and dual-bank (2 x 1MB) mode mapping, this stm32f7-dualbank-tool can be used. Before starting openocd, switch the flash mode to dualbank (e.g. via make dualbank using the dualbank tool).

OpenOCD configuration for flashing/debugging, can be copied into openocd.cfg in your working directory:

source [find interface/stlink.cfg]
source [find board/stm32f7discovery.cfg]
$_TARGETNAME configure -event reset-init {
    mmw 0xe0042004 0x7 0x0
}
init
reset
halt

OpenOCD can be either run in background (to allow remote GDB and monitor terminal connections), or directly from command line, to execute terminal scripts.

If OpenOCD is running, local TCP port 4444 can be used to access an interactive terminal prompt. telnet localhost 4444

Using the following openocd commands, the initial images for wolfBoot and the test application are loaded to flash in bank 0:

flash write_image unlock erase wolfboot.bin 0x08000000
flash verify_bank 0 wolfboot.bin
flash write_image unlock erase test-app/image_v1_signed.bin 0x08020000
flash verify_bank 0 test-app/image_v1_signed.bin 0x20000
reset
resume 0x0000001

To sign the same application image as new version (2), use the python script sign.py provided:

tools/keytools/sign.py test-app/image.bin wolfboot_signing_private_key.der 2

From OpenOCD, the updated image (version 2) can be flashed to the second bank:

flash write_image unlock erase test-app/image_v2_signed.bin 0x08120000
flash verify_bank 0 test-app/image_v1_signed.bin 0x20000

Upon reboot, wolfboot will elect the best candidate (version 2 in this case) and authenticate the image. If the accepted candidate image resides on BANK B (like in this case), wolfBoot will perform one bank swap before booting.

The bank-swap operation is immediate and a SWAP image is not required in this case. Fallback mechanism can rely on a second choice (older firmware) in the other bank.

STM32F7 Debugging

Debugging with OpenOCD:

Use the OpenOCD configuration from the previous section to run OpenOCD.

From another console, connect using gdb, e.g.:

arm-none-eabi-gdb
(gdb) target remote:3333

STM32H7

The STM32H7 flash geometry must be defined beforehand.

Use the "make config" operation to generate a .config file or copy the template using cp ./config/examples/stm32h7.config .config.

Example 2MB partitioning on STM32-H753:

WOLFBOOT_SECTOR_SIZE?=0x20000
WOLFBOOT_PARTITION_SIZE?=0xD0000
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0x8020000
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x80F0000
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0x81C0000

Build Options

The STM32H7 build can be built using:

make TARGET=stm32h7 SIGN=ECC256

STM32H7 Programming

ST-Link Flash Tools:

st-flash write factory.bin 0x08000000

OR

st-flash write wolfboot.bin 0x08000000
st-flash write test-app/image_v1_signed.bin 0x08020000

STM32H7 Testing

To sign the same application image as new version (2), use the sign tools

Python: tools/keytools/sign.py --ecc256 --sha256 test-app/image.bin wolfboot_signing_private_key.der 2 C Tool: tools/keytools/sign --ecc256 --sha256 test-app/image.bin wolfboot_signing_private_key.der 2

Flash the updated version 2 image: st-flash write test-app/image_v2_signed.bin 0x08120000

Upon reboot, wolfboot will elect the best candidate (version 2 in this case) and authenticate the image. If the accepted candidate image resides on BANK B (like in this case), wolfBoot will perform one bank swap before booting.

STM32H7 Debugging

  1. Start GDB server

ST-Link: st-util -p 3333

  1. Start GDB Client from wolfBoot root:
arm-none-eabi-gdb
add-symbol-file test-app/image.elf 0x08020000
mon reset init
b main
c

NXP LPC54xxx

Build Options

The LPC54xxx build can be obtained by specifying the CPU type and the MCUXpresso SDK path at compile time.

The following configuration has been tested against LPC54606J512BD208:

make TARGET=lpc SIGN=ECC256 MCUXPRESSO?=/path/to/LPC54606J512/SDK
    MCUXPRESSO_CPU?=LPC54606J512BD208 \
    MCUXPRESSO_DRIVERS?=$(MCUXPRESSO)/devices/LPC54606 \
    MCUXPRESSO_CMSIS?=$(MCUXPRESSO)/CMSIS

Loading the firmware

Loading with JLink (example: LPC54606J512)

JLinkExe -device LPC606J512 -if SWD -speed 4000
erase
loadbin factory.bin 0
r
h
JLinkGDBServer -device LPC606J512 -if SWD -speed 4000 -port 3333

Then, from another console:

arm-none-eabi-gdb wolfboot.elf -ex "target remote localhost:3333"
(gdb) add-symbol-file test-app/image.elf 0x0000a100

Cortex-A53 / Raspberry PI 3 (experimental)

Tested using https://github.com/raspberrypi/linux on Ubuntu 20

Prerequsites: sudo apt install gcc-aarch64-linux-gnu qemu-system-aarch64

Compiling the kernel

  • Get raspberry-pi linux kernel:
git clone https://github.com/raspberrypi/linux linux-rpi -b rpi-4.19.y --depth=1
  • Build kernel image:
export wolfboot_dir=`pwd`
cd linux-rpi
patch -p1 < $wolfboot_dir/tools/wolfboot-rpi-devicetree.diff
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcmrpi3_defconfig
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-
  • Copy Image and .dtb to the wolfboot directory
cp ./arch/arm64/boot/Image arch/arm64/boot/dts/broadcom/bcm2710-rpi-3-b.dtb $wolfboot_dir
cd $wolfboot_dir

Testing with qemu-system-aarch64

  • Build wolfboot using the example configuration (RSA4096, SHA3)
cp config/examples/raspi3.config .config
make clean
make wolfboot.bin CROSS_COMPILE=aarch64-linux-gnu-
  • Sign Linux kernel image
make keytools
./tools/keytools/sign --rsa4096 --sha3 Image wolfboot_signing_private_key.der 1
  • Compose the image
tools/bin-assemble/bin-assemble wolfboot_linux_raspi.bin 0x0 wolfboot.bin \
                              0xc0000 Image_v1_signed.bin
dd if=bcm2710-rpi-3-b.dtb of=wolfboot_linux_raspi.bin bs=1 seek=128K conv=notrunc
  • Test boot using qemu
qemu-system-aarch64 -M raspi3b -m 1024 -serial stdio -kernel wolfboot_linux_raspi.bin -cpu cortex-a53

Xilinx Zynq UltraScale

Xilinx UltraScale+ ZCU102 (Aarch64)

Build configuration options (.config):

TARGET=zynq
ARCH=AARCH64
SIGN=RSA4096
HASH=SHA3

QNX

cd ~
source qnx700/qnxsdp-env.sh
cd wolfBoot
cp ./config/examples/zynqmp.config .config
make clean
make CROSS_COMPILE=aarch64-unknown-nto-qnx7.0.0-

Debugging

qemu-system-aarch64 -M raspi3 -kernel /path/to/wolfboot/factory.bin -serial stdio -gdb tcp::3333 -S

Signing

tools/keytools/sign.py --rsa4096 --sha3 /srv/linux-rpi4/vmlinux.bin wolfboot_signing_private_key.der 1

Cypress PSoC-6

The Cypress PSoC 62S2 is a dual-core Cortex-M4 & Cortex-M0+ MCU. The secure boot process is managed by the M0+. WolfBoot can be compiled as second stage flash bootloader to manage application verification and firmware updates.

Building

The following configuration has been tested using PSoC 62S2 Wi-Fi BT Pioneer Kit (CY8CKIT-052S2-43012).

Target specific requirements

wolfBoot uses the following components to access peripherals on the PSoC:

Cypress provides a customized OpenOCD for programming the flash and debugging.

Clock settings

wolfBoot configures PLL1 to run at 100 MHz and is driving CLK_FAST, CLK_PERI, and CLK_SLOW at that frequency.

Build configuration

The following configuration has been tested on the PSoC CY8CKIT-62S2-43012:

make TARGET=psoc6 \
    NVM_FLASH_WRITEONCE=1 \
    CYPRESS_PDL=./lib/psoc6pdl \
    CYPRESS_TARGET_LIB=./lib/TARGET_CY8CKIT-062S2-43012 \
    CYPRESS_CORE_LIB=./lib/core-lib \
    WOLFBOOT_SECTOR_SIZE=4096

Note: A reference .config can be found in /config/examples/cypsoc6.config.

Hardware acceleration is enable by default using psoc6 crypto hw support.

To compile with hardware acceleration disabled, use the option

PSOC6_CRYPTO=0

in your wolfBoot configuration.

OpenOCD installation

Compile and install the customized OpenOCD.

Use the following configuration file when running openocd to connect to the PSoC6 board:

### openocd.cfg for PSoC-62S2

source [find interface/kitprog3.cfg]
transport select swd
adapter speed 1000
source [find target/psoc6_2m.cfg]
init
reset init

Loading the firmware

To upload factory.bin to the device with OpenOCD, connect the device, run OpenOCD with the configuration from the previous section, then connect to the local openOCD server running on TCP port 4444 using telnet localhost 4444.

From the telnet console, type:

program factory.bin 0x10000000

When the transfer is finished, you can either close openOCD or start a debugging session.

Debugging

Debugging with OpenOCD:

Use the OpenOCD configuration from the previous sections to run OpenOCD.

From another console, connect using gdb, e.g.:

arm-none-eabi-gdb
(gdb) target remote:3333

To reset the board to start from the M0+ flash bootloader position (wolfBoot reset handler), use the monitor command sequence below:

(gdb) mon init
(gdb) mon reset init
(gdb) mon psoc6 reset_halt

NXP iMX-RT

NXP RT1060/1062 and RT1050

The NXP iMX-RT1060 is a Cortex-M7 with a DCP coprocessor for SHA256 acceleration. Example configuration for this target is provided in /config/examples/imx-rt1060.config.

Building wolfBoot

MCUXpresso SDK is required by wolfBoot to access device drivers on this platform. A package can be obtained from the MCUXpresso SDK Builder, by selecting a target and keeping the default choice of components.

  • For the RT1060 use EVKB-IMXRT1060. See configuration example in config/examples/imx-rt1060.config.
  • For the RT1050 use EVKB-IMXRT1050. See configuration example in config/examples/imx-rt1050.config.

Set the wolfBoot MCUXPRESSO configuration variable to the path where the SDK package is extracted, then build wolfBoot normally by running make.

wolfBoot support for iMX-RT1060/iMX-RT1050 has been tested using MCUXpresso SDK version 2.11.1.

DCP support (hardware acceleration for SHA256 operations) can be enabled by using PKA=1 in the configuration file. Firmware can be directly uploaded to the target by copying factory.bin to the virtual USB drive associated to the device.

NXP Kinetis

Supports K64 and K82 with crypto hardware acceleration.

Buld options

See /config/examples/kinetis-k82f.config for example configuration.

The TARGET is kinetis. For LTC PKA support set PKA=.

Set MCUXPRESSO, MCUXPRESSO_CPU, MCUXPRESSO_DRIVERS and MCUXPRESSO_CMSIS for MCUXpresso configuration.

Example partioning for K82

WOLFBOOT_PARTITION_SIZE?=0x7A000
WOLFBOOT_SECTOR_SIZE?=0x1000
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0xA000
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x84000
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0xff000

NXP T2080 PPC

The T2080 is a PPC e6500 based processor.

Example configuration for this target is provided in /config/examples/t2080.config.

Building wolfBoot

wolfBoot can be built with gcc powerpc tools. For example, apt install gcc-powerpc-linux-gnu. Then make will use the correct tools to compile.

TI Hercules TMS570LC435

See /config/examples/ti-tms570lc435.config for example configuration.

Qemu x86-64 UEFI

x86-64bit machine with UEFI bios can run wolfBoot as EFI application.

Prerequisites:

  • qemu-system-x86_64
  • [GNU-EFI] (https://sourceforge.net/projects/gnu-efi/)
  • Open Virtual Machine firmware bios images (OVMF) by Tianocore

On a debian-like system it is sufficient to install the packages as follows:

# for wolfBoot and others
apt install git make gcc

# for test scripts
apt install sudo dosfstools curl
apt install qemu qemu-system-x86 ovmf gnu-efi

# for buildroot
apt install file bzip2 g++ wget cpio unzip rsync bc

Configuration

An example configuration is provided in config/examples/x86_64_efi.config

Building and running on qemu

The bootloader and the initialization script startup.nsh for execution in the EFI environment are stored in a loopback FAT partition.

The script tools/efi/prepare_uefi_partition.sh creates a new empty FAT loopback partitions and adds startup.nsh.

A kernel with an embedded rootfs partition can be now created and added to the image, via the script tools/efi/compile_efi_linux.sh. The script actually adds two instances of the target systems: kernel.img and update.img, both signed for authentication, and tagged with version 1 and 2 respectively.

Compiling with make will produce the bootloader image in wolfboot.efi.

The script tools/efi/run_efi.sh will add wolfboot.efi to the bootloader loopback partition, and run the system on qemu. If both kernel images are present and valid, wolfBoot will choose the image with the higher version number, so update.img will be staged as it's tagged with version 2.

The sequence is summarized below:

cp config/examples/x86_64_efi.config .config
tools/efi/prepare_efi_partition.sh
make
tools/efi/compile_efi_linux.sh
tools/efi/run_efi.sh
EFI v2.70 (EDK II, 0x00010000)
[700/1832]
Mapping table
      FS0: Alias(s):F0a:;BLK0:
          PciRoot(0x0)/Pci(0x1,0x1)/Ata(0x0)
     BLK1: Alias(s):
               PciRoot(0x0)/Pci(0x1,0x1)/Ata(0x0)
Press ESC in 1 seconds to skip startup.nsh or any other key to continue.
Starting wolfBoot EFI...
Image base: 0xE3C6000
Opening file: kernel.img, size: 6658272
Opening file: update.img, size: 6658272
Active Part 1
Firmware Valid
Booting at 0D630000
Staging kernel at address D630100, size: 6658016

You can Ctrl-C or login as root and power off qemu with poweroff

Nordic nRF52840

We have full Nordic nRF5280 examples for Contiki and RIOT-OS in our wolfBoot-examples repo

Examples for nRF52: * RIOT-OS: https://github.com/wolfSSL/wolfBoot-examples/tree/master/riotOS-nrf52840dk-ble * Contiki-OS: https://github.com/wolfSSL/wolfBoot-examples/tree/master/contiki-nrf52

Example of flash memory layout and configuration on the nRF52:

  • 0x000000 - 0x01efff : Reserved for Nordic SoftDevice binary
  • 0x01f000 - 0x02efff : Bootloader partition for wolfBoot
  • 0x02f000 - 0x056fff : Active (boot) partition
  • 0x057000 - 0x057fff : Unused
  • 0x058000 - 0x07ffff : Upgrade partition
#define WOLFBOOT_SECTOR_SIZE              4096
#define WOLFBOOT_PARTITION_SIZE           0x28000

#define WOLFBOOT_PARTITION_BOOT_ADDRESS   0x2f000
#define WOLFBOOT_PARTITION_SWAP_ADDRESS   0x57000
#define WOLFBOOT_PARTITION_UPDATE_ADDRESS 0x58000

Simulated

You can create a simulated target that uses files to mimic an internal and optionally an external flash. The build will produce an executable ELF file wolfBoot.elf. You can provide another executable ELF as firmware image and it will be executed. The command-line arguments of wolfBoot.elf are forwarded to the application. The example application test-app\app_sim.c uses the arguments to interact with libwolfboot.c and automatize functional testing. You can find an example configuration in config/examples/sim.config.

An example of using the test-app/sim.c to test firmware update:

cp ./config/examples/sim.config .config
make

# create the file internal_flash.dd with firmware v1 on the boot partition and
# firmware v2 on the update partition
make test-sim-internal-flash-with-update
# it should print 1
./wolfboot.elf success get_version
# trigger an update
./wolfboot.elf update_trigger
# it should print 2
./wolfboot.elf success get_version
# it should print 2
./wolfboot.elf success get_version