wolfSSL 3.4.6 Embedded SSL Now Available

Release 3.4.6 (March 30, 2015) of the wolfSSL lightweight embedded SSL library has bug fixes and new features including:

• Intel Assembly Speedups using instructions rdrand, rdseed, aesni, avx1/2, rorx, mulx, adox, adcx . They can be enabled with “–enable-intelasm”. These speedup the use of RNG, SHA2, and public key algorithms.
• Ed25519 support at the crypto level. Turn on with –enable-ed25519. Examples in “wolcrypt/test/test.c”, ed25519_test().
• Post Handshake Memory reductions. wolfSSL can now hold less than 1,000 bytes of memory per secure connection including cipher state.
• wolfSSL API and wolfCrypt API fixes, you can still include the cyassl and ctaocrypt headers which will enable the compatibility APIs for the foreseeable future
• INSTALL file to help direct users to build instructions for their environment
• For ECC users with the normal math library a fix that prevents a crash when verify signature fails. Users of 3.4.0 with ECC and the normal math library must update
• RC4 is now disabled by default in autoconf mode
• AES-GCM and ChaCha20/Poly1305 are now enabled by default to make AEAD ciphers available without a switch
• External ChaCha-Poly AEAD API, thanks to Andrew Burks for the contribution
• DHE-PSK cipher suites can now be built without ASN or Cert support
• Fix some NO MD5 build issues with optional features
• Freescale CodeWarrior project updates
• ECC curves can be individually turned on/off at build time.
• Sniffer handles Cert Status message and other minor fixes
• SetMinVersion() at the wolfSSL Context level instead of just SSL session level to allow minimum protocol version allowed at runtime
• RNG failure resource cleanup fix

• No high level security fixes that requires an update though we always recommend updating to the latest (except note 6, use case of ecc/normal math)

See the INSTALL file included with the wolfSSL download for build instructions.

More info about the wolfSSL embedded SSL library can be found on-line at http://wolfssl.com/yaSSL/Docs.html. Please contact wolfSSL at facts@wolfssl.com with any questions.

What does the Bar Mitzvah Attack mean for wolfSSL users?

This attack is based on the weak keys that the outdated stream cipher RC4 can sometimes generate.  Simply put, stop using RC4 in TLS connections.  In fact, wolfSSL (formerly CyaSSL) recently turned off the RC4 algorithm at build time.  This will be the default starting with the upcoming 3.4.6 release.  There has certainly been a pattern in the attacks that we’ve seen on TLS in the last few years; older Protocol versions, older modes, and older key sizes.  We suggest using TLS 1.2 with AEAD ciphers and forward secrecy.  Some people can’t get away with that in the interest of interoperability but it’s certainly the safest way forward that we can think of.  Please contact us with any questions.

Feel free to visit our website at wolfssl.com or email us at facts@wolfssl.com.

wolfSSL in MySQL

Currently MySQL comes bundled with yaSSL to provide an option for SSL/TLS connections when using a database. An update for MySQL to use the most recent wolfSSL library (formerly CyaSSL) instead of yaSSL is under way.

Along with an increased level of security comes the potential to use progressive features offered by wolfSSL – such as ChaCha20 / Poly1305 AEAD cipher suites (ex: ECDHE-RSA-CHACHA20-POLY1305). wolfSSL will fit nicely into both Open Source and commercial applications as it is dual licensed under both GPLv2 and standard commercial license terms.

For more information about the status of this port contact us at facts@wolfssl.com

Ed25519 Support Coming to wolfCrypt

wolfSSL is adding crypto level use of Ed25519 to wolfCrypt and plans to add TLS use of Ed25519 in the future. Benchmarks of our Ed25519 implementation have shown that the sign time can be reduced by up to 90% and verify time by up to 65% compared with the common ECC-DSA!

The following are some initial benchmarks:

CPU: 2.5 GHz Intel Core i7

ECC 256 key generation 0.775 milliseconds, avg over 100 iterations
EC-DSA sign time 0.739 milliseconds, avg over 100 iterations
EC-DSA verify time 0.528 milliseconds, avg over 100 iterations

ED25519 key generation 0.055 milliseconds, avg over 100 iterations
ED25519 sign time 0.053 milliseconds, avg over 100 iterations
ED25519 verify time 0.184 milliseconds, avg over 100 iterations

Raspberry Pi (ARM 700MHz)

ECC 256 key generation 82.494 milliseconds, avg over 100 iterations
EC-DSA sign time 84.862 milliseconds, avg over 100 iterations
EC-DSA verify time 52.444 milliseconds, avg over 100 iterations

ED25519 key generation 1.543 milliseconds, avg over 100 iterations
ED25519 sign time 1.821 milliseconds, avg over 100 iterations
ED25519 verify time 3.832 milliseconds, avg over 100 iterations

For questions about wolfSSL contact us at facts@wolfssl.com

Case Study: wolfSSL Provides Encryption for TwistM2M Platform

TwistM2M has released their multitalented, Verizon Wireless certified M2M device that allows cloud connectivity through Exosite’s secure cloud-based platform. This provides developers with a wide variety of widgets that can be used with the numerous sensors on the TwistM2M board including accelerometers, GPS, temperature and light sensors. The TwistM2M device is ideal for any developer wanting an Internet of Things (IoT) solution that can significantly shorten setup time and allow for many customizable applications.

wolfSSL was chosen as the SSL/TLS library for TwistM2M due to its extensive PIC32 support and lightweight capacity. wolfSSL also provides an I/O abstraction layer that helped TwistM2M tailor the SSL I/O functionality to use both cellular and Ethernet connections, a requirement for their M2M device.

If you would like more information on the TwistM2M platform, feel free to visit their website at www.twisthink.com. The TwistM2M/wolfSSL case study can be viewed on the wolfSSL case studies page.

For questions regarding the use of wolfSSL products in your embedded or IoT devices, contact us at facts@wolfssl.com.

wolfSSL Roadmap

Curious about new features and additions to wolfSSL technologies including the lightweight wolfSSL SSL/TLS library (formerly CyaSSL)?  Some items on our current roadmap include early TLS 1.3 adoption, curve25519 / ed25519 integration at the crypto and TLS level, more resource reduction options, and OCSP stapling support.  In terms of new environments we’ll soon have more FIPS platforms, additional hardware acceleration options, easier integration with event programming, Data plane development support, SRP integration, better Intel assembly crypto speedups, and more Open Source project plugins.  New product offerings will include wolfSSH and wolfCrypt as a separate library.  We also anticipate offering our testing and security audit programs as services.  Keep an eye out for connected home white papers and case studies.  Something we missed, or something you would like to see on our roadmap?  Please let us know.

Feel free to visit our website at wolfssl.com or email us at facts@wolfssl.com .

wolfSSL (CyaSSL) Support for Marvell 88MC200 Hardware AES Module

The Marvell 88MC200 is a system-on-chip microcontroller designed to be cost-effective, flexible, and easy to use. It was developed specifically for building connected smart devices and appliances. The Marvell 88MC200 is incredibly small (thumb-size) and runs energy efficient applications that can be used in mobile or cloud-based environments.

Marvell provides the Easy-Connect Software Development Kit (SDK) in combination with the 88MC200. This is a FreeRTOS-based software stack focusing on application-specific software functionality. One of the features of the 88MC200 is the inclusion of a hardware-accelerated AES module. When using wolfSSL in the Marvell SDK, wolfSSL automatically offloads AES operations into the 88MC200 hardware module. In doing so, users gain advantages in both speed and footprint size.

For more information on using wolfSSL with the Marvell 88MC200, contact us at facts@wolfssl.com. For detailed module information and other Marvell products, visit www.marvell.com.

Marvell 88MC200

wolfSSL on Cavium OCTEON

Looking for networking encryption and decryption? The powerful combination of wolfSSL and OCTEON hardware make for an exceptionally speedy and secure network connection. Cavium`s OCTEON processors have outstanding hardware acceleration support available for algorithms used in networking. For example in benchmarks ran using wolfSSL, AES operations increased from 8.6 MB/s to 261 MB/s with the OCTEON processor`s hardware acceleration support. That`s over 252 MB/s more!!

Along with hardware acceleration support for common symmetric algorithms, there is also support for asymmetric algorithms such as RSA and DH. A whole RSA encrypt and decrypt could be done in less than 7.5 milliseconds with hardware acceleration versus an average of 168 milliseconds without.

All of these massive increases in performance were seen with the use of just one core. The CN5860-SCP processor has the possibility of using all 16 cores, each core being able to handle its own SSL session. That`s the possibility of 16 independent and extremely fast SSL connections running in parallel.

For information about wolfSSL on Cavium OCTEON processors contact us at facts@wolfssl.com

CyaSSL name is changing to wolfSSL!

We currently in the process of changing the name of our embedded SSL/TLS library from CyaSSL to wolfSSL. This name change benefits our users and us a with a more consistent and standardized naming convention across our company and products.

A CyaSSL compatibility layer will remain available for those wanting to continue using the CyaSSL API. However, users are encouraged to update to the wolfSSL API upon release.

Aside from the new name, the structure and licensing of the CyaSSL library will remain the same. The FIPS branch of wolfCrypt, which was submitted to NIST for FIPS 140-2 cryptographic module validation, is unaffected by the name change.

Please follow our blog to for the latest information on the CyaSSL to wolfSSL name change. For any questions, please contact us at facts@wolfssl.com.

Posts navigation

1 2