RECENT BLOG NEWS

So, what’s new at wolfSSL? Take a look below to check out the most recent news.
Or sign up to receive weekly email notifications containing the latest news from wolfSSL.
In addition, wolfSSL now has a support-specific blog page dedicated to answering some of the more commonly received support questions.

Command-line Utility: Here’s What We’re Adding Next

wolfSSL has a command-line utility, it’s called wolfCLU. As promised, here’s a sneak peek of notable additions to wolfCLU that are coming soon:

  1. PKEY and certificate public key output
  2. Certificate request creation
  3. Updates to human readable text output of certificates

What do you want to see from wolfCLU? Download on GitHub today and write to facts@wolfSSL.com with your input!

Download wolfCLU: https://github.com/wolfSSL/wolfssl-examples/tree/master/wolfCLU
Love it? Star us on GitHub!

Did You Know We Have a Command-line Utility?

In case you didn’t know, wolfSSL has a portable command line utility. You can download wolfCLU on Github today for use with the wolfSSL embedded SSL/TLS library! wolfCLU (Command Line Utility) is backed by the best-tested crypto using wolfCrypt and it can make use of FIPS builds with wolfSSL!

wolfCLU currently has the following features:
– Support for ED25519 sign and verify
– Autoconf for portability
– Encrypt a file and store it locally on your computer
– Decrypt that file after it has been encrypted, or send it via email to your friend, if he/she knows the password and algorithm used for encryption, they can then decrypt it on their computer
– Hash a single file (IE a zip archive) for verification
– Benchmark the currently configured Algorithms
– X509 parsing and print out

Download wolfCLU: https://github.com/wolfSSL/wolfssl-examples/tree/master/wolfCLU
Love it? Star us on GitHub!

Upcoming wolfSSL Webinar: Common libcurl Mistakes

We’re back! wolfSSL will be hosting a webinar on common libcurl mistakes next Thursday, June 17th, 2021. Hear from cURL author and maintainer Daniel Stenberg on the most common mistakes developers make when using libcurl, how to troubleshoot, and best practices for making your libcurl applications seamless and secure.

Common libcurl Mistakes presented by Daniel Stenberg
Thursday, June 17th, 2021 at 9AM Pacific time (GMT-8)
Register below for the upcoming live webinar from wolfSSL:
https://us02web.zoom.us/webinar/register/WN_lwHCDuy5TxiG5RtYs8uoDQ 

Bring questions about our commercial curl support, tiny curl, curl with wolfCrypt FIPS, or the latest integration with MQTT. We look forward to having you join us! 

Additional resources:
– wolfSSL support for curl: https://www.wolfssl.com/products/curl/
– Daniel’s blog: https://daniel.haxx.se/blog/

Follow Daniel on Twitter @bagder
Follow wolfSSL on Twitter @wolfSSL

Upcoming: Partner Webinars this week!

This week, catch our partner webinars from both Microchip and Keyfactor. Join us for BOTH of these events to learn about how wolfSSL partners with industry leaders to bring you the best in IoT security.

Webinar with Keyfactor: Navigating Vehicle and IoT Security

Wednesday, June 9th, 8:00AM EST (2PM CEST)
Register: okt.to/P2ItYk
Vehicles are one of the most difficult devices to secure, but Keyfactor and wolfSSL have teamed up to help.*

*This webinar is available on-demand.

Webinar with Microchip: Securing the IoT from the Endpoint to the Cloud
Thursday, June 10th, 10:30AM CEST

Join us as we discuss how to use TLS/MQTT to ensure secure endpoint-to-cloud communication and learn how to secure endpoint communication with wolfSSL and MPLAB® Harmony Framework.

As always, we’re ready to tackle your questions with Security experts on-hand. In the meantime, write to us about your IoT projects at facts@wolfSSL.com!

Advantages of using wolfTPM with ST33 TPM 2.0

wolfTPM is the only TPM 2.0 library designed for baremetal and embedded systems. It also has native Windows and Linux support, alongside a TPM simulator for rapid development and testing.

When it comes to choosing a TPM 2.0 dedicated chip for your project, there are multiple options: Nuvoton NPCT75x, STMicroelectronics ST33, Infineon SLB9670, Microchip ATTPM20P, etc.

Here are our highlights when using ST33 chip with wolfTPM:

  • Only wolfTPM supports GPIO control for ST33
    • Depending on the chip variant, a ST33 could offer up to four(4) extra GPIO 
    • The access to these GPIO is protected by the TPM 2.0 authorization
    • Making the GPIO control offered by wolfTPM a great tool for signaling across subsystems for critical, important or security events
    • wolfTPM also provides an open-source example code ready for use


  • ST33 has the most Non-volatile memory storage on the market, right now
    • Typically, TPM 2.0 NVRAM storage is limited, this makes ST33  stand out. Multiple certificates and keys can be stored in the ST33 non-volatile memory
    • wolfTPM offers open-source examples on how to securely store secrets and keys in the TPM’s NVRAM
  • Using ST33 for Automotive, Industrial, Medical and Aerospace devices with wolfTPM is easy
    • Critical-safety systems often use state machines and RTOS
    • Baremetal and RTOS do not provide driver for TPM 2.0
    • Thanks to wolfTPM’s design, using ST33 without a driver is possible
    • wolfTPM has its own internal TIS layer and direct support for I2C and SPI
  • Using ST33 for IoT devices with wolfTPM is highly recommended, because our TPM 2.0 stack is lightweight. In comparison with other libraries, wolfTPM produces 20 times less code and 100 times less memory.
  • Only ST33 supports AES symmetric operations for encryption and decryption by default, using TPM2_EncryptDecrypt2. Other TPM 2.0 modules support by default only AES CFB for parameter encryption.

 

Contact us at facts@wolfssl.com if you want more information about wolfTPM or if you have any questions about using ST33 TPM 2.0 in embedded systems.

 

Visit Us at MWC!

We’re actually going somewhere! Come see wolfSSL at MWC ’21 in Barcelona this month. This year’s event is hybridized, so you can join us online or in-person.

MWC ‘21: June 28th – July 1st, 2021 at Fira Barcelona Gran Via
Get a virtual pass: https://www.mwcbarcelona.com/attend/registration#tab-virtual-passes
Get a physical pass: https://www.mwcbarcelona.com/attend/registration#tab-physical-passes
Exhibition hours: 9am-7pm (M-W), 9am-4pm (Th)

wolfSSL will be at booth 1L12, with Business Directors Wolfram Kusterer and Martin Engstrom on the ground to answer all your embedded security questions. Plus, our full sales team will be on standby in the virtual booth to talk to you! Email facts@wolfSSL.com if you’d like to book a meeting ahead of the event. 

If you’re new to wolfSSL, here’s how we can help you win big in mobile industry and beyond:
– wolfSSL is up to 20x smaller than OpenSSL
– First commercial implementation of TLS 1.3, with TLS 1.3 Sniffer
– First in FIPS 140-3
– Best tested, most secure, fastest crypto on the market with incomparable certifications and highly customizable modularity
– Access to 24×7 support from a real team of Engineers
– Support for the newest standards (including TLS 1.2, TLS 1.3, DTLS 1.2, and DTLS 1.3 forthcoming)
– Multi-platform, dual-licensed, royalty free, with an OpenSSL compatibility API to ease porting into existing applications which have previously used the OpenSSL package
– Full product suite including MQTT with support up to v5.0, Secure Boot, wolfSentry IDPS, SSHv2 server, TPM 2.0 portable project, Java wrappers and JSSE support, plus commercial curl support at the enterprise level. 

To learn more, come meet us at MWC ’21 or email facts@wolfSSL.com.  


Love it?
Star wolfSSL on GitHub.
Discover MWC ‘21 here.
Follow @wolfSSL on Twitter for daily updates!

Cryptographic benchmarks on the new Apple M1

wolfSSL is up and running and tested on Apple’s new M1 chip, and with the right options it is blazing fast! We have decided to benchmark our wolfCrypt/wolfSSL libraries on the Apple M1, to show you just how well the the M1 will perform in our standard cryptographic benchmarks.

See below for more details!

AlgorithmStockFPECCTunedunits
AES-128-CBC-enc293.883290.9481398.339MB/s
AES-128-CBC-dec373.651370.74613249.163MB/s
AES-192-CBC-enc254.407252.171262.787MB/s
AES-192-CBC-dec309.909299.73410647.85MB/s
AES-256-CBC-enc222.387217.4931089.026MB/s
AES-256-CBC-dec262.953256.2818721.781MB/s
AES-128-GCM-enc179.345174.9431747.438MB/s
AES-128-GCM-dec178.981172.858916.025MB/s
AES-192-GCM-enc162.299162.2081741.425MB/s
AES-192-GCM-dec162.174159.531918.173MB/s
AES-256-GCM-enc149.777145.5031737.536MB/s
AES-256-GCM-dec149.824147.596916.683MB/s
GMAC Table 4-bit349.384347.8431133.42MB/s
CHACHA634.519627.3551610.471MB/s
POLY13052033.2012041.0163875.21MB/s
CHA-POLY467.391460.9271159.885MB/s
RNG94.61592.271824.593MB/s
SHA1698.103721.239740.663MB/s
SHA2-224203.827205.5592342.624MB/s
SHA2-256205.875205.7472345.45MB/s
SHA2-384490.398493.513469.233MB/s
SHA2-512498.631495.535472.364MB/s
SHA3-224575.71570.766535.922MB/s
SHA3-256543.394540.197517.069MB/s
SHA3-384410.624412.87400.126MB/s
SHA3-512279.388285.977282.751MB/s
HMAC-MD5498.966508.38511.853MB/s
HMAC-SHA1721.945735.642714.138MB/s
HMAC-SHA2-224205.603205.8922320.677MB/s
HMAC-SHA2-256205.961205.7912350.719MB/s
HMAC-SHA2-384498.012494.334465.534MB/s
HMAC-SHA2-512498.887496.538456.999MB/s
RSA 2048 public19270.45819386.08361480.153ops/sec
RSA 2048 private310.831312.8181855.512ops/sec
DH 2048 agree1032.4021019.9013984.282ops/sec
ECDHE P-256 agree1627.5512351.7322747.658ops/sec
ECDSA P-256 sign1570.6059734.15640588.639ops/sec
ECDSA P-256 verify2388.1269321.69822289.143ops/sec
ECC P-256 key gen1613.47611507.20464141.471ops/sec
DH 2048 key gen2042.7262059.9964098.742ops/sec

If you have questions on these benchmarks, or if you would like some support to help replicate them on your system, let us know at facts@wolfSSL.com or give us a call!

wolfSSL support for NXP i.MX RT1060

The i.MX RT1060 is a powerful crossover MCU implementation of the Arm Cortex-M7 core, designed and produced by NXP. This MCU contains a TRNG and a data co-processor (DCP). The latter is capable of performing AES encryption and decryption, as well as calculating SHA and SHA256 digest.

Starting from version 4.7.0, wolfSSL provides a port driver that can redirect all the AES and SHA/SHA256 operations to the DCP, which has a number of advantages over the software implementation counterparts, reducing the footprint of the compiled library, improving performance and using less power.

The DCP driver can be enabled via the compile-time flag WOLFSSL_IMXRT_DCP, which delegates all the AES and SHA/SHA256 operations to the hardware co-processor. When this option is enabled, all TLS connections using these algorithms will rely on the hardware to perform the operations.

wolfSSL can also use the TRNG present in this core as an entropy source to seed the DRBG. Support for TRNG on this board can be enabled by adding the compile-time flag FREESCALE_KSDK_2_0_TRNG.

WolfSSL is not the only component in the product family that directly benefits from the presence of these secure elements on this target platform. SSH servers and clients based on wolfSSH will automatically use the accelerators for both SHA and AES when available and compiled in. The port for i.MX-RT1060 of wolfBoot, our secure bootloader, uses the SHA256 hardware acceleration to speed up the verification of the integrity of the firmware image. A full port of wolfBoot for i.MX-RT1060 is available, and its hardware abstraction layer is distributed with wolfBoot since version 1.7.1.

i.MX-RT1060 is a popular choice as edge computing platform, often deployed in combination with a real-time operating system and TCP/IP connectivity. WolfSSL, wolfSSH, wolfBoot and wolfMQTT can be easily added to these scenarios to enable secure communication, secure remote shell and filesystem services, as well as secure boot and remote firmware updates. The extra hardware security provided by DCP and TRNG makes the i.MX-RT1060 a reliable platform to build professional grade security with the latest standards.

Ask us more information about solutions based on i.MX RT1060 and other embedded systems, contact us today at facts@wolfssl.com.

strongSwan + wolfSSL + FIPS!

As some may be aware, wolfSSL added support for strongSwan in April of 2019. The upstream commit can be reviewed here: https://github.com/strongswan/strongswan/pull/133

Users can test the latest development master of wolfSSL with the latest version of strongSwan using the following setup:

wolfSSL Build and Installation Steps

$ git clone https://github.com/wolfSSL/wolfssl.git

$ cd wolfssl
$ ./autogen.sh

$ ./configure --enable-opensslall --enable-keygen --enable-rsapss --enable-des3 --enable-dtls --enable-certgen --enable-certreq --enable-certext --enable-sessioncerts --enable-crl --enable-ocsp CFLAGS="-DWOLFSSL_DES_ECB -DWOLFSSL_LOG_PRINTF -DWOLFSSL_PUBLIC_MP -DHAVE_EX_DATA"

$ make
$ make check
$ sudo make install

strongSwan Build and Installation Steps

# if the following packages are not already installed:
$ sudo apt-get install flex bison byacc libsoup2.4-dev gperf

$ git clone https://github.com/strongswan/strongswan.git
$ cd strongswan
$ ./autogen.sh

# if packages are missing autogen.sh must be re-run

$ ./configure --disable-defaults --enable-pki --enable-wolfssl --enable-pem
$ make
$ make check
$ sudo make install

wolfSSL has had interest in enabling FIPS 140-2/140-3 support with strongSwan so our engineers verified everything is working with the wolfCrypt FIPS 140-2 validated Module!

The steps wolfSSL used for testing are as follows:

Testing was done using the wolfSSL commercial FIPS release v4.7.0 which internally uses the wolfCrypt v4.0.0 FIPS 140-2 validated Crypto Module. It was located in the /home/user-name/Downloads directory on the target test system, Linux 4.15 Ubuntu 18.04 LTS running on Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz.

  1. wolfSSL was configured and installed with these settings:
./configure --enable-opensslall --enable-keygen --enable-rsapss --enable-des3 --enable-dtls --enable-certgen --enable-certreq --enable-certext --enable-sessioncerts --enable-crl --enable-ocsp CFLAGS="-DWOLFSSL_DES_ECB -DWOLFSSL_LOG_PRINTF -DWOLFSSL_PUBLIC_MP -DHAVE_EX_DATA -DFP_MAX_BITS=8192" --enable-ed25519 --enable-curve25519 --enable-fips=v2 --enable-intelasm --prefix=$(pwd)/../fips-install-dir
 make
 make install
  1. A custom install location was used which equated to /home/user-name/Downloads/fips-install-dir and the configuration for strongSwan accounted for this.
  2. strongSwan was cloned to /home/user-name/Downloads with “git clone https://github.com/strongswan/strongswan.git
  3. StongSwan was configured and installed with these settings:
./configure --disable-defaults --enable-pki --enable-wolfssl --enable-pem --prefix=$(pwd)/../strongswan-install-dir wolfssl_CFLAGS="-I$(pwd)/../fips-install-dir/include" wolfssl_LIBS="-L$(pwd)/../fips-install-dir/lib -lwolfssl"
 make
 make install
 make check
  1. In the make check stage of the test, it was observed that 1 test was failing.
 Passed 34 of 35 'libstrongswan' suites
 FAIL: libstrongswan_tests
 ==================
 1 of 1 test failed
 ==================
  1. Reviewing the logs it was apparent one of the RSA tests was failing.
  2. Upon further debugging it turned out the failure was a test in strongSwan that was attempting to create an RSA key size of 1536-bits.
Running case 'generate':
 DEBUG: key_sizes[_i] set to 1024
 + PASS
 DEBUG: key_sizes[_i] set to 1536
 - FAIL
 DEBUG: key_sizes[_i] set to 2048
 + PASS
 DEBUG: key_sizes[_i] set to 3072
 + PASS
 DEBUG: key_sizes[_i] set to 4096
 + PASS

wolfSSL has a function RsaSizeCheck() which in FIPS mode will specifically reject any non FIPS RSA key sizes so this failure was not only expected, but it is a good thing for those wanting to use strongSwan in FIPS mode and ensure only FIPS-validated RSA key sizes will be supported!

wolfSSL is pleased that with the latest release of wolfSSL v4.7.0 and the wolfCrypt FIPS 140-2 module validated on FIPS certificate 3389, strongSwan support is working splendidly and wolfSSL engineers will be making efforts to ensure continued support into the future!

If you have any questions about wolfSSL, wolfCrypt FIPS, or strongSwan and wolfSSL together please contact our support staff anytime at support@wolfssl.com or via our Zendesk portal by registering and opening a support incident at wolfssl.zendesk.com.

What are the Advantages of wolfTPM?

At wolfSSL, we have been developing a TPM stack with customers for many years called wolfTPM, a portable, open-source TPM 2.0 stack with backward API compatibility, designed for embedded use. It is highly portable, and has native support for Linux and Windows. RTOS and bare metal environments can take advantage of a single IO callback for SPI hardware interface, no external dependencies, and compact code size with low resource usage.

wolfTPM offers API wrappers to help with complex TPM operations like attestation and examples to help with complex cryptographic processes like the generation of Certificate Signing Request (CSR) using a TPM.

Due to wolfTPM’s portability, it is generally very easy to compile on new platforms.

Here are a few reasons to use wolfTPM over other secure elements:

1) It is based on a widely accepted standard TCG TPM 2.0.

2) There are many chip vendors options and they are pin compatible.

3) Support for RSA. All TPM’s support at least RSA 2048 (the STSAFE and ATECC do not).

4) More NV storage

5) Measured Boot (PCR’s)

6) Advanced Policy management

7) Seal/unseal data based on private key or PCR state.

Contact us at facts@wolfssl.com with any TPM, crypto questions!

Love it? Star wolfSSL on GitHub.

Posts navigation

1 2 3 4 5 6 7 134 135 136

Weekly updates

Archives

Latest Tweets