RECENT BLOG NEWS

So, what’s new at wolfSSL? Take a look below to check out the most recent news.
Or sign up to receive weekly email notifications containing the latest news from wolfSSL.
In addition, wolfSSL now has a support-specific blog page dedicated to answering some of the more commonly received support questions.

Using AES-NI in the wolfSSL embedded ssl library version 1.6.5

Hi!  Most of our readers will already know that AES is a key encryption standard used by governments worldwide, and that wolfSSL has always supported AES. 
 
Intel has released a new set of instructions that is a faster way to implement AES, and wolfSSL is currently the first ssl library to fully support the new instruction set for production environments. 
 
Essentially, Intel has added AES instructions at the chip level that perform the compute intensive parts of the AES algorithm, boosting performance. 
 
What we’ve done is add the functionality to wolfSSL to allow it to call  the instructions directly from the chip, instead of running the algorithm in software.  This means that when you’re running wolfSSL on a chipset that supports AES-NI, you can run your AES crypto 5-10 times faster! 
 
If you’re doing some benchmarking for your environment, let us know at info@yassl.com we’ll be happy to support you with the effort.  Our current benchmarks are in the lab, and we’d like to work with users that can help us further define real world expectations for speed improvements from AES-NI.
 
References and further reading, ordered from general to specific: 
 
Wikipedia entry on AES:  http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
Wikipedia entry on AES-NI:  http://en.wikipedia.org/wiki/AES_instruction_set
Intel Software Network page on AES-NI:   http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
 
See the README of wolfSSL 1.6.5 for instructions on building with AES-NI.

CyaSSL 1.6.5 is now available

Release 1.6.5 for CyaSSL adds bug fixes and x509 v3 self signed certificate generation.  For general build instructions see doc/Building_CyaSSL.pdf.  For details on how to use certificate generation, refer to section 11 in the wolfSSL manual.

To enable certificate generation support, add this option to ./configure

./configure –enable-certgen

An example is included in ctaocrypt/test/test.c and documentation is provided in doc/CyaSSL_Extensions_Reference.pdf item 11. Please contact support@yassl.com with any questions.

Exhibiting at ESC Boston – September 20-23 – booth 622

Hi!  We’ll be exhibiting at the upcoming Embedded Systems Computing show in Boston.  Please come by and see us if you’re at the show.  We’ll be talking about the latest release of the wolfSSL embedded ssl library, as well as our new product, the yaSSL Embedded Web Server. 
 
Looking forward to seeing you there!  If you want to schedule a specific time with us outside of exhibit hours, then contact us at info@yassl.com.

Timothy Stapko – Top Ten Considerations for embedded Wi-Fi device security

Here’s a nice article for embedded designers faced with securing an 802.11 device:  https://www.embedded.com/design/prototyping-and-development/4206409/10-things-to-consider-when-securing-an-embedded-802-11-Wi-Fi-device.
 
Stapko’s item 8 on the list caught our attention.  He correctly states that “Wi-Fi security protocols are big and slow.”  However, the article is an overview, and is not intended to discuss which ones are bigger and slower, and which ones are smaller and faster.  This, of course, is where we must chirp up and make the point that the wolfSSL embedded ssl solution is sized under 50k, as opposed to some solutions which are 20-50 times that size.

Reasoning Behind the Wolf in Our Logo

Have you ever wondered if there is a reason for the wolf in our logo? Why does a security company that focuses on embedded SSL products choose a wolf over any number of possible logo designs? We chose a wolf to be part of our logo for several reasons:

• Wolves like to live in free and open environments.
• Wolves communicate and hunt in packs, like open source developers hunt bugs.
• Wolves are lean and fast.

yaSSL Embedded Web Server Available for Download

The yaSSL Embedded Web Server is now available for download on Mac OS X and Linux!  The yaSSL Embedded Web Server is based on the popular Mongoose embedded web server – adding built-in SSL functionality.  Working closely with the Mongoose community, we have made it a priority to keep our focus on what customers want.  Reasoning behind choosing the Mongoose web server included:

•   Default size, with CyaSSL enabled, of less than 200K.

•   Excellent code base and community.

•   Portability to real time and embedded operating systems.

For more information about the Mongoose Web Server, documentation (including a manual, full web application example, API reference, and embedding strategies) can be viewed here: http://code.google.com/p/mongoose/w/list

Please contact us at info@yassl.com for more information regarding the yaSSL Embedded Web Server.  Download test and evaluation copies for OS X and Linux here: Download yaSSL Embedded Web Server.  We welcome your feedback!

wolfSSL 1.6.0 is now available

Release 1.6.0 for the wolfSSL embedded ssl library adds bug fixes, support for RIPEMD-160 and SHA-512 algorithms and RSA key generation.  For general build instructions see doc/Building_wolfSSL.pdf.  For build options to enable RIPEMD-160 and SHA-512, please see the README included in the download.

Please contact support@yassl.com with any questions.

DTLS and wolfSSL embedded ssl

Did you know that the wolfSSL embedded ssl solution includes DTLS support?  wolfSSL has supported DTLS functionality for over a year now.  Frankly, we have not had much user feedback on the feature, which means that either people are not using it or that those using it are perfectly satisfied.  If you care to comment, we’d love your feedback at info@yassl.com
 
DTLS was initially designed to serve the needs of secure VoIP designers, SIP users, internet game builders, and others that have an unreliable connection.  Further background on the genesis and purposing of DTLS can be found here:  http://crypto.stanford.edu/~nagendra/papers/dtls.pdf.  The RFC can be found here:  http://tools.ietf.org/html/rfc4347, and the Wikipedia page is here:  http://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security.

Posts navigation

1 2 3 78 79 80 81 82 83 84 85 86

Weekly updates

Archives

Latest Tweets